
Worksheet: Reverse engineering the model space 1

Read: Chapter 3.1–3.4 of Robeva/Hodge: Inferring the topology of gene regulatory networks:
an algebraic approach to reverse engineering. By B. Stigler and E. Dimitrova, pages 75–90.

Exercises.

1. Consider the following time-series over F2:

(1, 1, 1)
f−→ (1, 1, 0)

f−→ (0, 0, 1)
f−→ (0, 0, 1) .

(a) How many Boolean networks f = (f1, f2, f3) fit the following data? By inspection,
find two of them. Express your answer using Boolean logic and as polynomials in
F2[x1, x2, x3]/〈x2

1 − x1, x
2
2 − x2, x

2
3 − x3〉.

(b) Write down the vanishing ideal, I. That is, the set of all triples of polynomials
f = (f1, f2, f3) that vanish on the input data. (Giving a generating set for I is fine.)

(c) Write down the model space F1×F2×F3 consisting of all functions that fit the data.
[That is, write a formula for Fj for each j = 1, 2, 3.]

2. Consider the following time series in a 3-node polynomial dynamical system over F3:

(1, 1, 1)
f−→ (2, 0, 1)

f−→ (2, 0, 0)
f−→ (0, 2, 2)

f−→ (0, 2, 2) .

For reference, here are the input vectors si and output vectors ti:

s1 = (s11, s12, s13) = (1, 1, 1) , t1 = (t11, t12, t13) = (2, 0, 1) ,

s2 = (s21, s22, s23) = (2, 0, 1) , t2 = (t21, t22, t23) = (2, 0, 0) ,

s3 = (s31, s32, s33) = (2, 0, 0) , t3 = (t31, t32, t33) = (0, 2, 2) ,

s4 = (s41, s42, s43) = (0, 2, 2) , t4 = (t41, t42, t43) = (0, 2, 2) .

(a) Find polynomials f1, f2, f3 in F3[x1, x2, x3] that fit the data. That is, fj(si) = tij for
all i = 1, 2, 3, 4.

(b) For each i = 1, 2, 3, 4, write down the ideal Ii = I(si) of polynomials that vanish on
the data point si.

(c) Use the following commands in Macaulay2 to compute the ideal I of polynomials
that vanish on all of the input data points.

R = ZZ/3[x1,x2,x3,MonomialOrder=>Lex];

I = intersect{I1, I2, I3, I4};

Compute a Gröbner basis G of I.

(d) Write the model space of the time series using your answer to Part (a) as the par-
ticular solution.

(e) Compute the normal form of f1, f2, f3 with respect to G by reducing them modulo
the ideal I. Write the model space using this particular solution.

(f) Repeat Parts (c)–(e) using graded lex (GLex), graded reverse lex (GRevLex), and
reverse lex (RevLex).
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Summary of relevant literature.

The reverse engineering algorithm was originally published in [LS04]. As a pre-processing
step, sometimes (continuous) data needs to be discritized. One algorithm to do this was
published in [DLML10]. In [AFD+06], the authors applied algebraic reverse engineering
techniques to time-series data from protein signal transduction networks. Specifically,
they used this to identify protein dependencies.

Other (non-algebraic) algorithms to reverse engineer gene networks include [BdlFM02],
[GF05], [BBAIDB07], [THSH05].
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