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What does algebra have to do with biology?

Usually, when we think of mathematical biology, we think of models such as this:

dS

dt
“ ´αSI

dI

dt
“ αSI ´ γI

dR

dt
“ γI
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What does algebra have to do with biology?

Whereas algebra might remind us more of this:

How could these two topics possibly be related??
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What does algebra have to do with biology?

We all know that linear algebra is fundamental to mathematical biology.

Consider the following example, of a structured population of Eggs, Larvae, and Adults.
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This is one example of many, of how linear differential or difference equations can model
natural phenomena.
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What does algebra have to do with biology?

Linear algebra also arises when approximating non-linear models, a process called
linearization.

For example, consider the following Lotka-Volterra equations that model two competing
species:

P 1 “ Pp1´ P ´ Qq

Q1 “ Qp.75´ Q ´ .5Pq

Since p1, 0q is a steady-state, we can change variables pX ,Y q “ pP ´ 1,Q ´ 0q, and get the
system

„

X 1

Y 1



“

„

´1 ´1
0 .25

 „

X
Y



´

„

X 2 ` XY
.5XY ` Y 2



.

For pX ,Y q « p1, 0q, the non-linear terms are negligible. The linearized system is thus

„

X 1

Y 1



«

„

´1 ´1
0 .25

 „

X
Y



.
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What does algebra have to do with biology?

Linear algebra, the study of linear polynomials and their solutions, is a fundamental pillar of
mathematical biology.

Analyzing nonlinear polynomials and their solutions is much more complex.

It involves fields such as algebraic geometry and computational algebra.

Though these themes are not as ubiquitous in biology as linear algebra is, they arise in a
number of biological problems.

Algebraic Biology is the subfield that encompasses these problems, and the new mathematics
that they spawn.

In the rest of this lecture, we’ll see four examples of biological problems where nonlinear
algebra arises:

1. Biochemical reaction networks

2. Boolean models of molecular networks

3. Algebraic statistics and phylogenetics

4. Place fields in neuroscience

Then we’ll discuss new (pure) mathematics that has arisen from these biological problems.
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Linear algebra vs. nonlinear algebra
I will assume that everyone is familiar with the concept of a vector space, which is a:

set V of vectors (e.g., Rn)

field K of scalars (e.g., R, C, or Zp “ t0, 1, . . . , p ´ 1u)

that is closed under addition, subtraction, and scalar multiplication of vectors.

Many concepts in nonlinear algebra have simple linear algebra analogues. For example,

the subspace of V spanned by v1, . . . , vk is the set

Spanpv1, . . . , vk q “
 

a1v1 ` ¨ ¨ ¨ ` akvk | ai P Ku.

the ideal of R “ Frxs generated by polynomials f1, . . . , fk is the set

@

f1, . . . , fk
D

“
 

a1pxqf1pxq ` ¨ ¨ ¨ ` ak pxqfk pxq | ak pxq P R
(

.

nonlinear algebra concept linear algebra concept

polynomial ring R “ K rx1, . . . , xns vector space V

ideal I ď R subspace W ď V

Gröbner basis G “nice” vector space basis B

algebraic variety solution space

M. Macauley (Clemson) What is Algebraic Biology? Abram Gannibal Project 7 / 32

mailto:macaule@clemson.edu


Some general resources

Books

U. Alon. An introduction to systems biology: design principles of biological circuits. 2nd edition.
CRC press, 2019.

D. Cox. Applications of polynomial systems. 2020.

H. A. Harrington, M. Omar, and M. Wright. Algebraic and Geometric Methods in Discrete
Mathematics, volume 685. American Mathematical Society, 2017.

N. Jonoska and M. Saito. Discrete and Topological Models in Molecular Biology. Springer, 2013.

R. Robeva. Algebraic and Discrete Mathematical Methods for Modern Biology. Elsevier, 2015.

R. Robeva and T. Hodge. Mathematical Concepts and Methods in Modern Biology: Using Modern
Discrete Models. Academic Press, 2013.

R. Robeva and M. Macauley. Algebraic and Combinatorial Computational Biology. Elsevier, 2018.

Articles

R. Laubenbacher and B. Sturmfels. Computer algebra in systems biology. Amer. Math. Monthly,
pages 882–891, 2009.

M. Macauley and R. Robeva. Algebraic models, pseudomonomials, and inverse problems in algebraic
biology. Lett. Biomath., 7(1):81–104, 2020.

M. Macauley and N. Youngs. The case for algebraic biology: from research to education. Bull.
Math. Biol., 82(115), 2020.

B. Sturmfels. Can biology lead to new theorems? Annual report of the Clay Mathematics Institute,
pages 13–26, 2005.
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1. Biochemical reaction networks
Consider a simple biochemical reaction, where A, B, and C are molecular species:

A` B
k1
ÝáâÝ
k2

C , A
k3
ÝÑ 2B.

The constants k1, k2, and k3 represent reaction rates.

Let x1ptq, x2ptq, and x3ptq denote concentrations of A, B, and C . The assumption of the
laws of mass-action kinetics leads to the following system of ODEs:

x 11 “ ´k1x1x2 ´ k3x1 ` k2x3

x 12 “ ´k1x1x2 ` k2x3 ` 2k3x1

x 13 “ k1x1x2 ´ k2x3.

To find the steady-states, set each x 1i “ 0 and solve the system.

Biologically, we only care about solutions in the non-negative orthant of R3. However,
polynomials are easier to study over C.

For each fixed choice of parameters, the solutions form an algebraic variety in C3.

This can be found by computing a Gröbner basis of the ideal

I “
@

´ k1x1x2 ´ k3x1 ` k2x3, ´k1x1x2 ` k2x3 ` 2k3x1, k1x1x2 ´ k2x3

D

.
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1. Biochemical reaction networks

Research goals and open-ended questions

Key idea

What does the polynomial algebra tells us about the dynamics of the ODEs?

Persistence conjecture (Feinberg, 1987)

Every weakly reversible mass-action kinetics ODE is persistent, regardless of the rate
constants.

Permanence conjecture (stronger)

Every endotactic reaction network is permanent, regardless of rate constants.

Global attractor conjecture (weaker)

For a complex-balanced system, each equilibria c P RN
ą0 is globally asymptotically stable

relative to the interior of its compatibility class.
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1. Biochemical reaction networks
Books

M. Feinberg. Foundations of Chemical Reaction Network Theory. Springer, 2019.

K. Gatermann. Computer Algebra Methods for Equivariant Dynamical Systems. Springer, 2000.

Articles

C. Conradi, M. Mincheva, and A. Shiu. Emergence of oscillations in a mixed-mechanism
phosphorylation system. Bull. Math. Biol., 81(6):1829–1852, 2019.

G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. Toric dynamical systems. J. Symb. Comput.,
44(11):1551–1565, 2009.

G. Craciun and M. Feinberg. Multiple equilibria in complex chemical reaction networks: I. the
injectivity property. SIAM J. Appl. Math., 65(5):1526–1546, 2005.

G. Craciun and M. Feinberg. Multiple equilibria in complex chemical reaction networks: Ii. the
species-reaction graph. SIAM J. Appl. Math., 66(4):1321–1338, 2006.

G. Craciun, F. Nazarov, and C. Pantea. Persistence and permanence of mass-action and power-law
dynamical systems. SIAM J. Appl. Math., 73(1):305–329, 2013.

E. Gross, H. A. Harrington, Z. Rosen, and B. Sturmfels. Algebraic systems biology: a case study for
the wnt pathway. Bull. Math. Biol., 78(1):21–51, 2016.

A. Shiu and B. Sturmfels. Siphons in chemical reaction networks. Bull. Math. Biol.,
72(6):1448–1463, 2010.

Surveys / book chapters

C. Pantea, A. Gupta, J. B. Rawlings, and G. Craciun. The QSSA in chemical kinetics: as taught and
as practiced. In Discrete and Topological Models in Molecular Biology, pages 419–442. Springer,
2014.

K. Conradi and C. Pantea. Multistationarity in biochemical networks: results, analysis, and
examples. In Algebraic and Combinatorial Computational Biology, pages 279–317. Elsevier, 2018.
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2. Boolean models of molecular networks

Figure: The lactose operon in E. coli
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2. Boolean models of molecular networks
The following is a Boolean model of the lactose (lac) operon in E. coli:

x1pt ` 1q “ x3ptq

x2pt ` 1q “ x1ptq

x3pt ` 1q “ px2ptq ^ Lmq _ L_ px3ptq ^ x2ptqq

Time is discretized, and x1ptq, x2ptq, and x3ptq represent mRNA, β-galactosidase, and
allolactose.

There are two parameters (constants):

L “ concentration of extracellular lactose (high)

Lm “ concentration of extracellular lactose (at least medium)

To find the fixed points, we work over the quotient ring of Boolean functions:

F2rx1, x2, x3, L, Lms{
@

x2
1 ´ x1, x

2
2 ´ x2, x

2
3 ´ x3, L

2 ´ L, L2
m ´ Lm

D

The above system, in polynomial form, becomes the algebraic model

f1 “ x3

f2 “ x1

f3 “ x3 ` p1` x3 ` x2x3 ` x2LmqL` x2px3 ` Lmq

To find the fixed points, we need to solve the system tfi ´ xi “ 0 | i “ 1, 2, 3u.
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2. Boolean models of molecular networks

The solution to the system of equations tfi ´ xi “ 0 | i “ 1, 2, 3u is the variety of the ideal

I “
@

fi ´ xi | i “ 1, 2, 3
D

“
@

x3 ` x1, x1 ` x2, p1` x3 ` x2x3 ` x2LmqL` x2px3 ` Lmq
D

.

A computer algebra package easily computes a Gröbner basis to be

G “
 

x1 ` x3, x2 ` x3, p1` Lmqx3 ` p1` LmqL, p1` x3qL
(

.

Key idea

The system tgi “ 0 | i “ 1, . . . , 4u has the same solutions as tfi ´ xi “ 0 | i “ 1, 2, 3u.

Let’s solve this (by hand) for the initial condition pL, Lmq “ p0, 1q, i.e., medium lactose levels.
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2. Boolean models of molecular networks

Research goals and open-ended questions

Key idea

What does the polynomial algebra tells us about the dynamics of the algebraic model?

Given a gene regulatory network, how can we models it with polynomials?

How we can determine whether are there only fixed points?

How we we reduce a large model while perserving its key features? (e.g., fixed points,
limit cycles, etc.)

How can we characterize stability of the dynamics of an algebraic model?

How can we reverse-engineer a model given partial data?

What can we say about the dynamics if we restrict to a particular class of functions?

How does the update order (synchronous, asynchronous, block-sequential) determine
the dynamics?
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2. Boolean models of molecular networks
Books

Y. Crama and P. L. Hammer. Boolean Models and Methods in Mathematics, Computer Science,
and Engineering, volume 2. Cambridge University Press, 2010.

I. Shmulevich and E.R. Dougherty. Probabilistic Boolean networks: the modeling and control of
gene regulatory networks. SIAM, 2010.

R. Thomas and R. d’Ari. Biological feedback. CRC press, 1990 (updated 2006).

Book chapters
R. Robeva. Algebraic and Discrete Mathematical Methods for Modern Biology. Elsevier, 2015.
Chapters 1–6.

R. Robeva and T. Hodge. Mathematical Concepts and Methods in Modern Biology: Using Modern
Discrete Models. Academic Press, 2013. Chapters 4–7.

R. Robeva and M. Macauley. Algebraic and Combinatorial Computational Biology. Elsevier, 2018.
Chapters 4–6.

Survey articles
B. Drossel. Random Boolean networks, Chapter 3, pages 69–110. Wiley-VCH Verlag GmbH & Co.,
Weinheim, Germany, 2009.

R.-S. Wang, A. Saadatpour, and R. Albert. Boolean modeling in systems biology: an overview of
methodology and applications. Phys. Biol., 9(5):055001, 2012.

F. Hinkelmann, D. Murrugarra, A. S. Jarrah, and R. Laubenbacher. A mathematical framework for
agent based models of complex biological networks. Bulletin of mathematical biology,
73(7):1583–1602, 2011.

A. Gonzalez, A. Naldi, L. Sanchez, D. Thieffry, and C. Chaouiya. GINsim: a software suite for the
qualitative modelling, simulation and analysis of regulatory networks. Biosystems, 84(2):91–100,
2006.

D. Thieffry and M. Kaufman. Prologue to the special issue of JTB dedicated to the memory of René
Thomas (1928-2017): A journey through biological circuits, logical puzzles and complex dynamics.
J. Theor. Biol., 474:42, 2019.
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2. Boolean models of molecular networks

Articles (biological modeling)

R. Albert and H.G. Othmer. The topology of the regulatory interactions predicts the expression
pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol., 223(1):1–18,
2003.

E.E. Allen, J.S. Fetrow, L.W. Daniel, S.J. Thomas, and D.J John. Algebraic dependency models of
protein signal transduction networks from time-series data. J. Theor. Biol., 238(2):317–330, 2006.

M. Davidich and S. Bornholdt. Boolean network model predicts cell cycle sequence of fission yeast.
PloS ONE, 3(2):e1672, 2008.

A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry. Dynamical analysis of a generic Boolean model for
the control of the mammalian cell cycle. Bioinformatics, 22(14):e124–e131, 2006.

A. Jenkins and M. Macauley. Bistability and asynchrony in a Boolean model of the l-arabinose
operon in Escherichia coli. Bull. Math Biol., 79(8):1778–1795, 2017.

S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Random Boolean network models and the
yeast transcriptional network. Proc. Natl. Acad. Sci., 100(25):14796–14799, 2003.

L. Mendoza, D. Thieffry, and E. Alvarez-Buylla. Genetic control of flower morphogenesis in
Arabidopsis thaliana: a logical analysis. Bioinformatics, 15(7):593–606, 1999.

B. Stigler and H. Chamberlin. A regulatory network modeled from wild-type gene expression data
guides functional predictions in caenorhabditis elegans development. BMC Syst. Biol., 6(1):77, 2012.

A. Veliz-Cuba and B. Stigler. Boolean models can explain bistability in the lac operon. J. Comp.
Biol., 18(6):783–794, 2011.
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2. Boolean models of molecular networks

Articles (algebraic aspects)

E.S. Dimitrova, A.S. Jarrah, R. Laubenbacher, and B. Stigler. A Gröbner fan method for
biochemical network modeling. In Proc. Internat. Symposium Symb. Algebraic Comput., pages
122–126. ACM, 2007.

F. Hinkelmann and R. Laubenbacher. Boolean models of bistable biological systems. Discrete Cont.
Dyn. Sys. Ser. S, 4(6):1443–1456, 2011.

A.S. Jarrah, R. Laubenbacher, B. Stigler, and M. Stillman. Reverse-engineering of polynomial
dynamical systems. Adv. Appl. Math., 39(4):477–489, 2007.

R. Laubenbacher and B. Stigler. A computational algebra approach to the reverse engineering of
gene regulatory networks. J. Theor. Biol., 229(4):523–537, 2004.

D. Murrugarra and E.S. Dimitrova. Molecular network control through Boolean canalization.
EURASIP J. Bioinformatics Sys. Biol., 2015(1):1–8, 2015.

D. Murrugarra, A. Veliz-Cuba, B. Aguilar, and R. Laubenbacher. Identification of control targets in
Boolean molecular network models via computational algebra. BMC Systems Biology, 10(1):94,
2016.

L. Sordo Vieira, R.C. Laubenbacher, and D. Murrugarra. Control of intracellular molecular networks
using algebraic methods. Bull Math Biol, 82(2), 2020.

A. Veliz-Cuba. An algebraic approach to reverse engineering finite dynamical systems arising from
biology. SIAM Journal on Applied Dynamical Systems, 11(1):31–48, 2012.

A. Veliz-Cuba, B. Aguilar, F. Hinkelmann, and R. Laubenbacher. Steady state analysis of Boolean
molecular network models via model reduction and computational algebra. BMC Bioinformatics,
15(1):221, 2014.

A. Veliz-Cuba and R. Laubenbacher. On the computation of fixed points in Boolean networks. J.
Appl. Math. Comput., 39(1-2):145–153, 2012.
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3. Phylogenetics and algebraic statistics

Consider a simple evolutionary relationship of two species and their most common ancestor.

Fix a particular base in the genome at a site that all three species share in a mutual
alignment.

Under the Jukes-Cantor model of evolution, the probability of a mutation at that site is a
constant.

ancestor

human

α

chimp

β

It is straightforward to compute the probability that (human,chimp)=(A,C):

PpACq “ P

ˆ

A C

A
˙

` P

ˆ

A C

G
˙

` P

ˆ

A C

C
˙

` P

ˆ

A C

T
˙

“
1

4
p1´ 3αqβ `

1

4
αβ `

1

4
αp1´ 3βq `

1

4
αβ “

1

4
pα` β ´ αβq.
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3. Phylogenetics and algebraic statistics

Similarly, PpAAq “ 1
4
p1´ 3αqp1´ 3βq ` 3

4
αβ “ 3αβ ` 1

4
p1´ 3α´ 3βq.

The space of possible probabilities can be described by a mapping

ϕ : R2 ÝÑ R16, ϕ : pα, βq ÞÝÑ
`

PpAAq,PpACq, . . . ,PpTT q
˘

.

For an n-leaf tree with m “ 2n ´ 2 edges, we get a map ϕ : Rm Ñ R4n .

The intersection of Impϕq, with the d “ 4n ´ 1 dimensional simplex ∆d is the phylogenetic

model, MT Ď R4n .

The polynomials that vanish on MT is called the ideal of phylogenetic invariants,

IT “ IT pMT q “
 

f P Rrx1, . . . , x4n s | f ppq “ 0, for all p PMT

(

.

The points that vanish on all polynomials in the ideal IT is called the phylogenetic variety of
T :

VT “ VT pIT q “
 

p P R4n | f ppq “ 0, for all f P IT
(

.
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3. Phylogenetics and algebraic statistics

Books

D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry, volume 161. American
Mathematical Soc., 2015.

L. Pachter and B. Sturmfels. Algebraic Statistics for Computational Biology, volume 13. Cambridge
University Press, 2005.

G. Pistone, E. Riccomagno, and H. P. Wynn. Algebraic Statistics: Computational Commutative
Algebra in Statistics. Chapman and Hall/CRC, 2000.

R. Rabadán and A. J. Blumberg. Topological Data Analysis for Genomics and Evolution: Topology
in Biology.

S. Sullivant. Algebraic Statistics, volume 194. American Mathematical Soc., 2018.

Articles

M. Casanellas and J. A. Rhodes. Algebraic methods in phylogenetics. Bull. Math. Biol.,
81:313–315, 2019.

J. Chifman and L. Kubatko. Quartet inference from SNP data under the coalescent model.
Bioinformatics, 30(23):3317–3324, 2014.

P. Diaconis, B. Sturmfels, et al. Algebraic algorithms for sampling from conditional distributions.
Ann. Stat., 26(1):363–397, 1998.

J. Fernández-Sánchez and M. Casanellas. Invariant versus classical quartet inference when evolution
is heterogeneous across sites and lineages. Syst. Biol., 65(2):280–291, 2016.

L. Pachter and B. Sturmfels. The mathematics of phylogenomics. SIAM Rev., 49(1):3–31, 2007.
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4. Place fields in neuroscience
Experiments have shown that neurons called place cells fire based on an animal’s location.

As an animal moves around, different subsets of neurons fire. The region that causes a
specific neuron to fire is its place field.

We can encode which neurons fire with a binary string. For example, c “ 10100 means
neurons 1 and 3 fire, and neurons 2, 4, and 5 are silent.

We can encode this with a pseudomonomial in F2rx1, x2, x3, x4, x5s called its characteristic
polynomial:

χcpxq “ x1px2 ´ 1qx3px4 ´ 1qpx5 ´ 1q “ x1x2x3x4 x5 “

#

1 x “ c

0 x ‰ c.
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4. Place fields in neuroscience

Motivating question

Given a collection of binary strings called a neural code, reconstruct the place fields.

For example, how would you construct place
fields U “ tU1,U2,U3,U4,U5u that realize the
code

C “ t00000, 10000, 11000, 10100, 11100,

10010, 10110, 00100, 00110, 00101,

00111, 00010, 00011, 00001u?

The shaded region is encoded by the pseudomonomial

χcpxq “ x1px2 ´ 1qx3px4 ´ 1qpx5 ´ 1q “ x1x2x3x4 x5 “

#

1 x “ c

0 x ‰ c.

We can encode C and U by an ideal in F2rx1, . . . , x5s involving these polynomials.

It also defines a simplicial complex

∆pCq :“
 

σ Ď rns | σ Ď supppcq for some c P C
(

.
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4. Place fields in neuroscience

Another interesting question

Given a neural code, can it be realized by a collection of open convex place fields?

For example, the code
C “ t000, 100, 010, 101, 110, 011u

cannot be realized by open convex place fields.

Many of these questions can be approached algebraically. Every code C has a vanishing ideal,

IC “
 

f P F2rx1, . . . , xns | f pcq “ 0 for all c P C
(

.

A related object is the neural ideal, which is defined by the characteristic polynomials of the
non-code words:

JC “
@

χnpxq | n R C
D

, where χnpxq “

#

1 x “ n

0 x ‰ n.

These ideals are related by

IC “ JC ` B “
@

tχnpxq | n R Cu Y tx2
i ´ xi | i “ 1, . . . , nu

D

.
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4. Place fields in neuroscience

Combinatorial features encoded algebraically are called recptive field (RF) relationships.

For example, note that:

if c1 “ c2 “ 1 for some c P C, then U1 X U2 ‰ H

if c1 “ 1 implies c2 “ 1, then U1 Ď U2.

The corresponding RF relationships are:

if px1 ´ 1qp1´ x2q R JC , then U1 X U2 ‰ H

if x1p1´ x2q P JC , then U1 Ď U2.

Definition

The set of minimal pseudomonomials in JC is called the canonical form of JC .

The canonical form CFpJCq can be computed from the primary decomposition of JC .

Exercise

Show that the neural ideal of C “ t000, 111, 011, 001u is

JC “
@

p1´x1qx2p1´x3q, x1p1´x2qp1´x3q, x1p1´x2qx3, x1x2p1´x3q
D

“ xx1p1´x2q, x2p1´x3qy,

and its canonical form CFpJCq “
 

x1p1´ x2q, x2p1´ x3q, x1p1´ x3q
(

.
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4. Place fields in neuroscience

Research goals and open-ended questions

Key idea

How does the algebra encode the geometric and topological properties of the place fields?

How are certain combinatorial relationships (e.g., intersections, subsets, etc.) encoded
algebraically?

What are necessary and sufficient conditions for a neural code to be convex?

Given a code, what is the smallest dimension where it can be realized?

How can one construct the canonical form?

How do properties of the vanishing and neural ideals tells us about the place fields?
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4. Place fields in neuroscience
Surveys (book chapters, graduate theses)

C. Curto, A. Veliz-Cuba, and N. Youngs. Analysis of combinatorial neural codes: An algebraic approach. In Algebraic
and Combinatorial Computational Biology, pages 213–240. Elsevier, 2018.

S. A. Tsiorintsoa. Pseudo-monomials in algebraic biology. MSc thesis. AIMS South Africa, 2018.

N. Youngs. The neural ring: using algebraic geometry to analyze neural codes. PhD thesis, University of Nebraska,
Lincoln, 2014.

Articles

J. Cruz, C. Giusti, V. Itskov, and B. Kronholm. On open and closed convex codes. Discrete Comput. Geom.,
61(2):247–270, 2019.

C. Curto, E. Gross, J. Jeffries, K. Morrison, M. Omar, Z. Rosen, A. Shiu, and N. Youngs. What makes a neural code
convex? SIAM J. Appl. Alg. Geom., 1(1):222–238, 2017.

C. Curto, E. Gross, J. Jeffries, K. Morrison, Z. Rosen, A. Shiu, and N. Youngs. Algebraic signatures of convex and
non-convex codes. J. Pure Appl. Alg., 223(9):3919–3940, 2019.

C. Curto, V. Itskov, K. Morrison, Z. Roth, and J. L. Walker. Combinatorial neural codes from a mathematical coding
theory perspective. Neural Computation, 25(7):1891–1925, 2013.

C. Curto, V. Itskov, A. Veliz-Cuba, and N. Youngs. The neural ring: an algebraic tool for analyzing the intrinsic
structure of neural codes. Bull. Math. Biol., 75(9):1571–1611, 2013.

R. Garcia, L. D. Garćıa Puente, R. Kruse, J. Liu, D. Miyata, E. Petersen, K. Phillipson, and A. Shiu. Gröbner bases
of neural ideals. Int. J. Algebr. Comput., 28(04):553–571, 2018.

S. Gunturkun, J. Jeffries, and J. Sun. Polarization of neural rings. arXiv:1706.08559, 2017.

A. Kunin, C. Lienkaemper, and Z. Rosen. Oriented matroids and combinatorial neural codes. arXiv:2002.03542, 2020.

E. Petersen, N. Youngs, R. Kruse, D. Miyata, R. Garcia, and L. D. G. Puente. Neural ideals in sagemath. In
International Congress on Mathematical Software, pages 182–190. Springer, 2018.

A. Ruys de Perez, Laura Felicia Matusevich, and Anne Shiu. Neural codes and the factor complex. Adv. Appl.
Math., 114:101977, 2020.

N. Youngs. Neural ideal: a Matlab package for computing canonical forms, 2015.
https://github.com/nebneuron/neural-ideal/.
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The theory of pseudomonomials

A squarefree monomial is a polynomial of the form f pxq “ xi1xi2 ¨ ¨ ¨ xik .

Ideals generated by these are called squarefree monomial ideals, and are well-studied.

The polynomial
χcpxq “ x1px2 ´ 1qx3px4 ´ 1qpx5 ´ 1q “ x1x2x3x4 x5

is not a monomial, but we’ll call it a (squarefree) pseudomonomial.

We can define the concept of a (square-free) pseudomonomial ideal.

These have been studied since 2013. And even they can be generalized.

Definition (S. Tsiorintsoa, 2018)

A pseudomonomial is a polynomial of the form

x
ai
ri :“ px1 ´ ri1q

ai1 ¨ ¨ ¨ pxn ´ rinq
ain , rin P F, aij P Zn

ě0

A pseudomonomial ideal is any ideal generated by pseudomonomials.

All of this mathematical theory has been inspired from actual biological problems!
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Pseudomonomials from algebraic models

There are 212 “ 4096 functions f : F4
2 Ñ F2 that “fit the data”, called the “model space”.

x 1111 1110 1101 1100 1011 1010 1001 1000
f pxq 0 ? 0 ? ? ? ? ?

x 0111 0110 0101 0100 0011 0010 0001 0000
f(x) ? 1 ? ? ? 0 ? ?

Two of them are: f “ x1 ^ x2 and f “ x2 ^ x3 ^ x4. Their wiring diagrams are:

f

x1 x2 x3 x4

tx1, x2u

f

x1 x2 x3 x4

tx2, x3, x4u

Questions

What (minimal) sets of variables does f have to depend on?

Are these dependencies positive or negative?
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Pseudomonomials from algebraic models

Instead of F2 “ t0, 1u, we’ll work over F3 “ t0, 1,´1u.

We’ll encode the data with a pseudomonomial ideal J and take its primary decomposition

J “ P1 X ¨ ¨ ¨ XPk, Pi is a primary ideal.

The is the analogue of factoring an integer into its prime powers. For example,
360 “ 23 ¨ 32 ¨ 5, and

360Z “ 8ZX 9ZX 5Z.

Theorem (Veliz-Cuba, 2011)

Each primary component Pi encodes a minimal signed wiring diagram.

Let’s re-visit the partial data:
x 0010 1100 1111 0110

f pxq 0 0 0 1

For each ti ă tj , we’ll compute a pseudomonomial ppsi , sj q encoding the sign of the change:

pps1, s4q “ x2 ´ 1, pps2, s4q “ px1 ` 1qpx3 ´ 1q, pps3, s4q “ px1 ` 1qpx4 ` 1q.

These define the ideal of signed non-disposable sets

J4c
D
“

@

pps1, s4q, pps2, s4q, pps3, s4q
〉
“

@

px2 ´ 1q, px1 ` 1qpx3 ´ 1q, px1 ` 1qpx4 ` 1q
〉
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Signed min-sets, formally

In coordinate i , we’re representing

a positive change (activation) with pxi ´ 1q

a negative change (inhibition) with pxi ` 1q.

Encode the change in the ith coordinate of s and s1 as:

Bi ps, s
1q “

$

’

&

’

%

1 si ă s 1i
´1 si ą s 1i
0 s 1i “ si

Definition / theorem

The ideal of signed non-disposable sets of D is

J4c
D
“

@

pps, s1q | t ă t1
D

where pps, s1q “
ź

si‰s1
i

`

xi ´ Bps, s
1q
˘

.

The primary components of J4c
D

are signed min-sets of D.
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Computing the signed min-sets

We can compute the primary decomposition in Macaulay2 (or Singular, Sage, etc.):

R = ZZ/3[x1,x2,x3,x4]

J_nonDisp = ideal(x2-1,(x1+1)*(x3-1),(x1+1)*(x4+1))

primaryDecomposition J_nonDisp

There are two primary components:

J4c
D
“

@

px2 ´ 1q, px1 ` 1qpx3 ´ 1q, px1 ` 1qpx4 ` 1q
〉

“
@

x1 ´ 1, x2 ` 1
D

X
@

x2 ´ 1, x3 ´ 1, x4 ` 1
D

.

The signed min-sets are tx1, x2u and tx2, x3, x4u.

Thus, any function f that fits the data

x 0010 1100 1111 0110
f pxq 0 0 0 1

must depend:

positively on x1 and negatively on x2, or

positively on x2 and x3, and negatively on x4
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