1. Write each of the following Boolean expressions as a polynomial in $\mathbb{F}[x, y, z]$.
(a) $x \wedge y$
(c) \bar{x}
(b) $x \vee y$
(d) $\bar{x} \vee(y \wedge \bar{z})$

It may help to write the truth table of each. Remember that \wedge is AND and \vee is OR .
2. Consider the following simple model of the lac operon:

$$
\begin{array}{ll}
f_{M}=\bar{R} & f_{R}=\bar{A} \\
f_{P}=M & f_{A}=L \wedge B \\
f_{B}=M & f_{L}=P
\end{array}
$$

For this problem, make the convention that $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(M, P, B, R, A, L)$.
(a) (Optional) Sketch the signed wiring diagram of this Boolean network.
(b) (Optional) Justify each function in a single sentence. What other assumptions are made in this model? (E.g., presence or absense of external lactose and glucose?)
(c) Write each function as a polynomial over $\mathbb{F}_{2}=\{0,1\}$. Then, write out a system of equations whose solutions are the fixed points of the Boolean network.
(d) Find the fixed points by computing a Gröbner bases with a software package.
3. Consider a Boolean function $f: \mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}$ with the following partial truth table

$x y z$	111	000	110
$f(x, y, z)$	0	0	1

which we can express as the following input-ouput pairs of data:

$$
\mathcal{D}=\left\{\left(\mathbf{s}_{1}, t_{1}\right),\left(\mathbf{s}_{2}, t_{2}\right),\left(\mathbf{s}_{3}, t_{3}\right)\right\}=\{(111,0),(000,0),(110,1)\} .
$$

(a) Compute the pseudomonomial $p\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)$, for each distinct pair.
(b) Use a computer algebra package like Macaulay2 to compute the primary decomposistion of the pseudomonomial ideal

$$
J_{\Delta_{D}^{c}}=\left\langle p\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right) \mid t_{i}<t_{j}\right\rangle .
$$

(c) Find the signed min sets of f.
(d) For each signed min set, find a Boolean function that fits the data with that as its wiring diagram.
4. In Macaulay2, the following commands produce a shortcut for converting Boolean functions into polynomials:

```
RingElement | RingElement :=(x,y)->x+y+x*y;
RingElement & RingElement :=(x,y)->x*y;
```

For example, Problem 1(d) can be easily solved with the command: (1+x) | (y \& (1+z)). Determine how to do this in Singular, for those familiar with with that software.

