1. Construct a realization of the code

$$
\mathcal{C}=\{0000,1000,0100,0010,1100,0110,0101,1101,0111\} .
$$

2. Let $\mathcal{C}$ be a code, and let $\sigma$ and $\tau$ be subsets of $[n]=\{1, \ldots, n\}$ such that $\sigma \cap \tau \neq \emptyset$.
(a) Describe what the RF relationship

$$
\bigcap_{i \in \sigma} U_{i} \subseteq \bigcup_{j \in \tau} U_{j}
$$

captures, in a realization $\mathcal{U}$ of $\mathcal{C}$.
(b) Construct an example of this for $n=6$, where $\sigma=\{1,2,3,4\}$ and $\tau=\{3,4,6\}$.
(c) Express this condition algebraically, in terms of the neural ideal $J_{\mathcal{C}}$.
3. Show that the ideals $J=\left\langle x_{1}\left(1-x_{2}\right) x_{3}, x_{1} x_{2} x_{3}\right\rangle$ and $K=\left\langle x_{1} x_{3}\right\rangle$ in $\mathbb{F}_{2}\left[x_{1}, x_{2}, x_{3}\right]$ are equal. Find a code $\mathcal{C}$ for which $J=J_{\mathcal{C}}$, sketch the place fields, and compute the canonical form.
4. Consider the place fields $\mathcal{U}=\left\{U_{1}, \ldots, U_{5}\right\}$ shown below.

(a) Write down the corresponding code $\mathcal{C}(\mathcal{U})$. Explain why it contains 15 binary strings, despite there being 16 connected regions.
(b) Write down the vanishing ideal $I_{\mathcal{C}}$, and the neural ideal $J_{\mathcal{C}}$. Find a minimal generating set for each.
(c) Construct the simplicial complex $\Delta(\mathcal{C})$.
(d) Find another collection of place fields that has the same simplicial complex.
5. Explore the Neural Ideal Sage package, at https://github.com/e6-1/NeuralIdeals, or the Matlab package, available at https://github.com/nebneuron/neural-ideal/.

