1. Construct a realization of the code

 $C = \{0000, 1000, 0100, 0010, 1100, 0110, 0101, 1101, 0111\}.$

- 2. Let \mathcal{C} be a code, and let σ and τ be subsets of $[n] = \{1, \ldots, n\}$ such that $\sigma \cap \tau \neq \emptyset$.
 - (a) Describe what the RF relationship

$$\bigcap_{i \in \sigma} U_i \subseteq \bigcup_{j \in \tau} U_j$$

captures, in a realization \mathcal{U} of \mathcal{C} .

- (b) Construct an example of this for n = 6, where $\sigma = \{1, 2, 3, 4\}$ and $\tau = \{3, 4, 6\}$.
- (c) Express this condition algebraically, in terms of the neural ideal $J_{\mathcal{C}}$.
- 3. Show that the ideals $J = \langle x_1(1-x_2)x_3, x_1x_2x_3 \rangle$ and $K = \langle x_1x_3 \rangle$ in $\mathbb{F}_2[x_1, x_2, x_3]$ are equal. Find a code \mathcal{C} for which $J = J_{\mathcal{C}}$, sketch the place fields, and compute the canonical form.
- 4. Consider the place fields $\mathcal{U} = \{U_1, \ldots, U_5\}$ shown below.

- (a) Write down the corresponding code $\mathcal{C}(\mathcal{U})$. Explain why it contains 15 binary strings, despite there being 16 connected regions.
- (b) Write down the vanishing ideal $I_{\mathcal{C}}$, and the neural ideal $J_{\mathcal{C}}$. Find a minimal generating set for each.
- (c) Construct the simplicial complex $\Delta(\mathcal{C})$.
- (d) Find another collection of place fields that has the same simplicial complex.
- 5. Explore the Neural Ideal Sage package, at https://github.com/e6-1/NeuralIdeals, or the Matlab package, available at https://github.com/nebneuron/neural-ideal/.