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equilibrium solutions are the solutions that can be “seen” in the direction field in
Figure 8. They are shown plotted in blue in Figure 10.

Next we notice that f(y) = 1 — y* is positive if —1 < y < 1 and negative
otherwise. Thus, if y(¢) is a solution to equation (1.24), and —1 <y < 1, then

y =1-y*>0.

Having a positive derivative, y is an increasing function.

How large can a solution y(¢) get? If it gets larger than 1, then y’ = 1— y? <0,

s0 y(t) will be decreasing. We cannot complete this line of reasoning at this point,
but in Section 2.9 we will develop the argument, and we will be able to conclude
that if y(0) = yp > 1, then y(z) is decreasing and y(¢) — 1 as ¢ — oo.
, 10. Equilibrium solutions to On the other hand, if y(0) = yg satisfies —1 < yo < 1,theny’ = 1— y2 > 0,50
uation y' = 1— " y(1) will be increasing. We will again conclude that y(t) i 1ncreases and approaches
1 as ¢ — oo. Thus any solution to the equation y’ = 1 — y? with an initial value
yo > —1 approaches 1 as t — oo.

Finally, if we consider a solution y(t) with y(0) = yo < —1, then a similar
analysis shows that y'(t) = l — % < 0, so y(¢) is decreasing. As y(t) decreases,
its derivative y'(#) = 1 — y? gets more and more negative. Hence, ‘y(¢) decreases
faster and faster and must approach —oo as t increases. Typical solutions to equa-
tion (1.24) are shown in Figure 11. These solutions were found with a computer,
but their qualitative nature can be found simply by looking at the equation.
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Figure 11. Typical solutions to the equation y' =1 — y?

EXERCISES

II} Exercises 1 and 2 , given the function ¢, place the ordinary a plot that shows what you consider to be the most important
differential equation ¢ (¢, y, ) = 0 in normal form. behavior of the family.

L ¢(x,y,2) =x’z4+ (1 +x)y _ 3.y = —ty, y(t) = Ce™WP? C=-3,-2,....,3

2. ¢(x,y,2) =xz—2y —x* 4.y +y=26,y(t) =2t —2+Ce™",C=-3,-2,...,3
In Exercises 3—6, show that the given solution is a general solu- }C}: —I_—(l(/lz)/tZ)C): - 2;:08 té" y(®) =5 (4/5)cost + (8/5)sint +
tion of the differential equation. Use a computer or calculator ¢ P T T T

to sketch the solutions for the given values of the arbitrary con- V' =y(@4—y),yt) =4/1+Ce™),C=12,...,5
stant. Experiment with different intervals for ¢ until you have
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7. Al general solution may fail to produce all solutions of a

fferential equation. In Exercise 6, show that y = Oisa

solution of the differential equation, but no value of C in
the given general solution will produce this solution.

8. (a) Use implicit differentiation to show that P24y =C?
implicitly defines solutions of the differential equa-
tiont + yy' =0.

(b) Solve 1> + y* = C? for y in terms of ¢ to provide
explicit solutions. Show that these functions are also
solutions of t + yy' = 0.

(c) Discuss the interval of existence for each of the solu-
tions in part (b).

(d) Sketch the solutions in part (b) for C =1, 2.3, 4.

9. (a) Useimplicit differentiation to show that 12—4y* = C?
implicitly defines solutions of the differential equa-
tiont —4yy =0.

(b) Solve 12 — 4y*> = C? for y in terms of ¢ to provide
explicit solutions. Show that these functions are also
solutions of t — 4yy" = 0.

(¢) Discuss the interval of existence for each of the solu-
tions in part (b).

(d) Sketch the solutions in part (b)forC =1,2,3,4.

10. Show that y(#) = 3/(6¢ — 11) is a solution of y' = —2y%,

y(2) = 3. Sketch this solution and discuss its interval of

existence. Include the initial condition on your sketch.

11. Show that y(¢) =4/(1 — 5¢~%) is a solution of the initial
value problem y’ = y(4 — ¥), y(0) = —1. Sketch this
solution and discuss its interval of existence. Include the
initial condition on your sketch.

In Exercises 12—15, use the given general solution to find a so-
lution of the differential equation having the given initial con-
dition. Sketch the solution, the initial condition, and discuss
the solution’s interval of existence.

12. y' 44y = cost, y(t) = (4/17) cost+(1/17) sint+Ce™™,
y(0)=-1

13. 1y +y =15 y@) = (/) + C/t,y(1) =2

14. ty' + (1 + Dy =2te™, y@) = e ¢ + C/1), y(1) =1/e

15. y' = yQ2 +y), y(t) =2/(=1+ Ce™), y(0) = =3

16. Maple, when asked for the solution of the initial value
problem y' = ./y, y(0) = 1, returns two solutions:
y@) = /4@ + 2)% and y(t) = (1/4)(t — 2)*. Present
a thorough discussion of this response, including a check
and a graph of each solution, interval of existence, and so

on. Hint: Remember that va? = lal.

In Exercises 17-20, plot the direction field for the differential
equation by hand. Do this by drawing short lines of the appro-
priate slope centered at each of the integer valued coordinates

v),where——2§t§2and—1§y§ 1.
17. ¥ =y +1t 1§;’:y2—t

19,y = rtan(y/2) (20 y.E @0/ +5)

In Exercises 21-24, use a computer to draw a direction field
for the given first-order differential equation. Use the indi-
cated bounds for your display window. Obtain a printout and
use a pencil to draw a number of possible solution trajectories
on the direction field. If possible, check your solutions with a
computer.

21. y'=—ty, R={(t,y): —=3<1<3,-5<y=5}
22. y’=y2—t,R={(z,y):—2§t§10,—4§y§4}
23. y':t—y+1,R={(t,y):—6§t§6,—6§y_<_6}

4.y =(+0)/y -1, R={t,y):-5=1=5-5=%

y =5}
For each of the initial value problems in Exercises 25-28 use
a numerical solver to plot the solution curve over the indicated
interval. Try different display windows by experimenting with
the bounds on y. Note: Your solver might require that you first
place the differential equation in normal form.

25. y+y =2,y0)=0,7€[-2,10]
26. y +ty=1%y0)=3,1e[-44]
27. ¥y =3y =sint, y(0) = -3, t € [—67, /4]
28. y' + (cost)y = sint, y(0) = 0,1 € [—10, 10]

Some solvers allow the user to choose dependent and indepen-
dent variables. For example, your solver may allow the equa-
tion r' = —2sr + =5, but other solvers will insist that you
change variables so that the equation reads y' = =2ty + e,
or y' = —2xy + e~*, should your solver require ¢ or x as the
independent variable. For each of the initial value problems
in Exercises 29 and 30, use your solver to plot solution curves

over the indicated interval.
29. ¢’ + xr = cos(2x), r(0) = —3,x € [-4,4]
30. 7'+ T =5, T(-3)=0,5 €[-5,5]

In Exercises 31-34, plot solution curves for each of the initial
conditions on one set of axes. Experiment with the different
display windows until you find one that exhibits what you feel
is all of the important behavior of your solutions. Note: Se-
lecting a good display window is an art, a skill developed with
experience. Don’t become overly frustrated in these first at-
tempts.

3Ly =y3—y),y0=-2-1012 3,4,5
32 4 —x2=1,x0)=-2,02,x2)=0,x4) = -3,0,3,

x(6) =0
33. y' = sin(xy), y(0) = 0.5, 1.0, 1.5, 2.0, 2.5
34, x' = —tx,x(0)=-3,-2,-1,0,1,2,3

35. Bacteria in a petri dish is growing according to the equa-
tion
dP
— = 0.44P,
dt

where P is the mass of the accumulated bacteria (mea-
sured in milligrams) after ¢ days. Suppose that the initial
mass of the bacterial sample is 1.5 mg. Use a numerical
solver to estimate the amount of bacteria after 10 days.
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Notice the similarity

'EXERCISES

In Exercises 1-12, find the general solution of the indicated
differential equation. If possible, find an explicit solution.

L3 =xy Y =2y

"3. yﬁ = 4. y = (1 +y)e

5. y=xy+y 6.y =ye* —2¢"+y—2
7. ¥ =x/(y+2) 8.y =xy/(x—1

9. x*y =ylny—y 10. xy' —y = 2x%y

11. Y3y =x + 2y 12. y' = Qxy+2x)/(x*=1)

In Exercises 13—18, find the exact solution of the initial value
problem. Indicate the interval of existence.

(B Y =y/x,y1) =2

T4y =21+ y)/y.y0) =1

16. y' = &+, y(0) =0

17. y = (1459, y0) =1

18. y' = x/(1+2y),y(-1) =0

In Exercises 1922, find exact solutions for each given initial
condition. State the interval of existence in each case. Plot
each exact solution on the interval of existence. Use a numeri-

cal solver to duplicate the solution curve for each initial value
problem.

19. y' o x/y, y(O) =1, y(O) =—1
20. y' = —x/y, y(0) = 2,y(0) = -2
2Ly =2 —y, y(0) =3,y0) =1

22 Solutions to Separable Equations 35

The integral on the left contains the expression y'(r) dt. This is inviting us to change
the variable of integration to y, since when we do that, we use the equation dy =
y'(f) dt. Making the change of variables leads to

2.37)

/ hy)dy = f o) dt.

between (2.36) and (2.37). Equation (2.36), which has no
meaning by itself, acquires a precise meaning when both sides are integrated. Since
this is precisely the next step that we take when solving separable equations, we can
be sure that our method is valid.

We mention in closing that the objects in (2.36), h(y) dy and g(t) dt, can be
given meaning as formal
tial forms, and the special cases like dy and dt are called differentials. The basic
formula connecting differentials dy and dt when y is a function of 7 is

objects that can be integrated. They are called differen-

dy = y'(t)dt,

the change-of-variables formula in integration. These techniques will assume greater
importance in Section 2.6, where we will deal with exact equations. The use of dif-
ferential forms is very important in the study of the calculus of functions of several
variables and especially in applications to geometry and to parts of physics.

2.y ="+ 1D/y,y1) =2

23. Suppose that a radioactive substance decays according to
the model N’ = Noe™». Show that the half-life of the
radioactive substance is given by the equation

In2
T1/2 = —.

T (2.38)

24. The half-life of 28U is 4.47 x 107 yr.

(a) Use equation (2.38) to compute the decay constant A
for UL

(b) Suppose that 1000 mg of 238 are present initially.
Use the equation N = Npe™' and the decay constant
determined in part (a) to determine the time for this
sample to decay to 100 mg.

/Z’ST? vitium, *H, is an isotope of hydrogen that is sometimes
sed as a biochemical tracer. Suppose that 100 mg of 3H
decays to 80 mg in 4 hours. Determine the half-life of *H.

/é)g:\ e isotope Technetium 99m is used in medical imag-
img. It has a half-life of about 6 hours, a useful feature
for radioisotopes that are injected into humans. The Tech-
netium, having such a short half-life, is created artificially
on scene by harvesting from a more stable isotope, Mb.
If 10 g of ®"Tc are “harvested” from the Molybdenum,
how much of this sample remains after 9 hours?

27. The isotope lodine 131 is used to destroy tissue in an over-
active thyroid gland. It has a half-life of 8.04 days. If a
hospital receives a shipment of 500 mg of 1311, how much
of the isotope will be left after 20 days?
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36 CHAPTER2 First-Order Equations
28. A substance confains two Radon isotopes, 2°Rn [f1p = (c) If all else fails, plotting the natural logarithm of the i
2.42h] and 2R 1, =15 h]. Atfirst, 20% of the decays decay raftes versus the time will produce a curve that 4
come from 2'Rn. How long must one wait until 80% do is almost linear. Draw the straight line that in your ‘
so? estimation provides the best fit. The slope of this line 1

provides an estimate of —A.

29. Suppose that a radioactive substance decays according t0

the model N = Noe™. 31. A 1.0 gsampleof Radium 226 is measured to have a decay
' rate of 3.7 x 10 disintegrations/s. What is the half-life of
226R4 in years? Note: A chemical constant, called AvO-
gadro’s number, says that there are 6.02 % 1023 atoms per
mole, a common unit of measurement in chemistry. Fur-
thermore, the atomic mass of 26Ra is 226 g/mol.

(a) Show that after a period of Th, = 1/A, the material has
decreased to e ! of its original value. Tj is called the
fime constant and it is defined by this property. .

(b) A certain radioactive substance has a half-life of 12

hours. Compute the time constant for this substance.
32. Radiocarbon dating. Carbon 14 is produced naturally

in the earth’s atmosphere through the interaction of cos-
mic rays and Nitrogen 14. A neutron comes along and
strikes a "N nucleus, knocking off a proton and creating

(c) If there are originally 1000 mg of this radioactive sub-
stance present, plot the amount of substance remain-
ing over four time periods T;.

In the laboratory, a more useful measurement is the decay rate a 14C atom. This atom now has an affinity for oxygen and
R, usually measured in disintegrations per second, counts per quickly oxidizes as a 14CO, molecule, which has many
minute, etc. Thus, the decay rate is defined as R = —dN/dt. of the same chemical properties as regular CO;. Through
Using the equation dN/dt = —AN, it is easily seen that R = photosynthesis, the 4CO, molecules work their way into
AN. Furthermore, differentiating the solution N = Noe™ the plant system, and from there into the food chain. The
with respect to ¢ reveals that ratio of *C to regular carbon in living things is the same as
R _ Roe‘“ (2.39) the ratio of these carbon atoms in the earth’s atmosphere,

’ ) which is fairly constant, being in a state of equilibrium.

in which Ry is the decay rate att = 0. That is, because R When a living being dies, it no longer ingests 14C and the
and N are proportional, they both decrease with time accord- existing '*C in the now defunct life form begins to de-
ing to the same exponential law. Use this idea to help solve cay. In 1949, Willard F. Libby and his associates at the
Exercises 30-31. ' University of Chicago measured the half-life of this de-

cay at 5568 + 30 years, which to this day is known as the
Libby half-life. We now know that the half-life is closer
to 5730 years, called the Cambridge half-life, but radio-

30. Jim, working with a sample of 31T in the lab, measures the
decay rate at the end of each day.

(}; o (C(gj?\[‘;‘;fsﬂ) E)%Z) (C;‘;‘;f;f;w) carbon dating labs still use the Libby half-life for technical
_________——’————//1 , 938 6 : 5 a7 - ?nd histqrical reasons. Libby was awarded the Nobel prize
) 822 7 536 in chemistry for his discovery.
3 753 3 494 (a) Carbon 14 dating is a useful dating tool for organisms
4 738 9 455 that lived during a specific time period. Why is that?
3 647 10 429 Estimate this period.
Like any modern scientist, Jim wants to use all of the data (b) Suppose that the ratio of 14 to carbon in the charcoal
instead of only two points to estimate the constants Ro and on a cave wall is 0.617 times 2 similar catio in living
X in equation (2.39). He will use the technique of regres- wood in the area. Use the Libby half—life {0 estimate
sion to do so. Use the first method in the following list that the age of the ch arcbal.
your technology makes available to you to estimate A (and /g,//\ o o
Ry, at the same time). Use this estimate to approximate the Q’\_’”f}mmd“ victim is discovered at midnight and the tem-
half-life of 1. ‘ =perature of the body is recorded at 31°C. One hour later,

the temperature of the body is 29°C. Assume that the sur-
. . . . rounding air temperature remains constant at 21°C. Use
can do an exponential regression to directly estimate ; - s

Newton’s law of cooling t0 calculate the victim’s time of

Ry and A. « » ‘o
] ] ) death. Note: The “norma temperature of a living human

(b) Taking the natural logarithm of both sides of equa-  being is approximately 37°C.

tion (2.39) produces the result s

(a) Some modern calculators and the spreadsheet Excel

734, Su pose a cold beer at 40°F is placed into a warm room
InR = —\t + In Ro. _a#/10°F. Suppose 10 minutes later, the temperature of the
beer is 48°E. Use Newton’s law of cooling to find the tem:

Now In R is a linear function of . Most calcula- " -
perature 25 minutes after the beer was placed into the

tors, numerical goftware such as MATLAB®, and

computer algebra systems such as Mathematica and ro0m.
Maple will do a linear regression, enabling you to esti- 35. Referring to the previous problem, suppose a 50° bottle of
mate In Rg and A (e.g., use the MATLAB® command beer is discovered on a Kitchen counter in a 70° room. Ten

polyfit). minutes later, the bottle is 60°. If the refrigerator is kept




