MTHSC 208, HW 16

- (1) For each of the following sets, determine if it is a vector space. If it is, give a basis. If it isn't, explain why not.
 - (a) The set of points in \mathbb{R}^3 with x = 0.
 - (b) The set of points in \mathbb{R}^2 with x = y.
 - (c) The set of points in \mathbb{R}^3 with x = y.
 - (d) The set of points in \mathbb{R}^3 with $z \ge 0$.
 - (e) The set of unit vectors in \mathbb{R}^2 .
 - (f) The set of polynomials of degree n.
 - (g) The set of polynomials of degree at most n.
 - (h) The set of polynomials of degree at most n, with even constant term.
 - (i) The set of polynomials of degree at most n, with odd constant term.
- (2) Let X be the set of polynomials of degree at most 4. Give three different examples of a basis for X, and one non-example.
- (3) Let X be a vector space over \mathbb{C} (i.e., the contants are complex numbers, instead of just real numbers). If $\{v_1, v_2\}$ is a basis of X, then by definition, every vector v can be written uniquely as $v = C_1 v_1 + C_2 v_2$.
 - (a) Is the set $\{v_1 + v_2, 3v_1 2v_2\}$ also a basis of X?

 - (a) Is the set {1/1 + 0/2, set 1 2e/2} and a state of *X*?
 (b) Is the set {1/2v₁ + 1/2v₂, 1/2iv₁ 1/2iv₂} a basis of *X*?
 (c) Consider the ODE y'' + 4y = 0. If we assume that y(t) = e^{rt}, then we get that r = ±2i. Therefore, the general solution is y(t) = C₁e^{2it} + C₂e^{-2it}, i.e., {e^{2it}, e^{-2it}} is a basis for the solution space. Use (b), and Euler's equation $(e^{i\theta} = \cos \theta + i \sin \theta)$ to find a basis for the solution space involving sines and cosines, and write the general solution using sines and cosines.
- (4) We will find the general solution of Airy's equation: y'' + xy = 0.
 - (a) Assume the solution is a power series. Find the recurrence relation of the coefficients of the power series. Hint: When shifting the indices, one way is to let m = n - 3, then factor out x^{n+1} and find a_{n+3} in terms of a_n . Alternatively, you can find a_{n+2} in terms of a_{n-1} .)
 - (b) Show that $a_2 = 0$. Hint: the two series for y'' and xy don't "start" at the same power of x, but for any solution, each term must be zero.
 - (c) Find the particular solution when y(0) = 1, y'(0) = 0, as well as the particular solution when y(0) = 0, y'(0) = 1.
 - (d) Find the radii of convergence of the two series from (c).
- (5) For each of the following ODEs, determine whether x = 0 is an ordinary or singular point. If it is singular, determine whether it is regular or not. (Remember, first write each ODE in the form y'' + P(x)y' + Q(x)y = 0.)
 - (a) $y'' + xy' + (1 x^2)y = 0$
 - (b) $y'' + (1/x)y'' + (1 (1/x^2))y = 0.$
 - (c) $x^2y'' + 2xy + (\cos x)y = 0.$
 - (d) $x^3y'' + 2xy' + (\cos x)y = 0.$