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For full credit, be sure to show your work on all of these problems!
(1) Find the general solution to the following 2nd order linear homogeneous ODEs.

(a) y′′ + 2y = 0
(b) y′′ + 4y′ + 5y = 0

(2) Find the particular solution to the following 2nd order linear ODEs.
(a) y′′ + 25y = 3, y(0) = 1, y′(0) = −1
(b) y′′ − 2y′ + 17y = 0, y(0) = −2, y′(0) = 3

(3) As we’ve seen, to solve ODE of the form

y′′ + py′ + qy = 0 , p and q constants

we assume that the solution has the form ert, and then we plug this back into the ODE
to get the characteristic equation: r2 + pr + q = 0. Given that this equation has a double
root r = r1 (i.e., the roots are r1 = r2), show by direct substitution that y = ter1t is a
solution of the ODE, and then write down the general solution.

(4) Suppose that z(t) = x(t) + iy(t) is a solution of

z′′ + pz′ + qz = Aeiωt .

Substitute z(t) into this equation above. Then compare (equate) the real and imaginary
parts of each side to prove two facts:

x′′ + px′ + qx = A cos ωt

y′′ + py′ + qy = A sinωt .

Write a sentence or two summarizing the significance of this result.
(5) Solve the following initial value problems using the method of undetermined coefficients.

(a) y′′ + 3y′ + 2y = −3e−4t, y(0) = 1, y′(0) = 0
(b) y′′ + 2y′ + 2y = 2 cos 2t, y(0) = −2, y′(0) = 0
(c) y′′ + 4y′ + 4y = 4− t, y(0) = −1, y′(0) = 0
(d) y′′ − 2y′ + y = t3, y(0) = 1, y′(0) = 0


