For full credit, be sure to show your work on all of these problems!

(1) If $y_f(t)$ is a solution of
\[y'' + py' + qy = f(t) \]
and $y_g(t)$ is a solution of
\[y'' + py' + qy = g(t), \]
show that $z(t) = \alpha y_f(t) + \beta y_g(t)$ is a solution of
\[y'' + py' + qy = \alpha f(t) + \beta g(t), \]
where α and β are any real numbers.

(2) Find the general solution to the following 2nd order linear homogeneous ODEs.
 (a) $y'' + 2y + 2y = 2 + \cos 2t$
 (b) $y'' + 25y = 2 + 3t + 4 \cos 2t$
 (b) $y'' - y = t - e^{-t}$.

(3) (a) Find the general solution of $y'' + 3y' + 2y = te^{-4t}$. (Look for a particular solution of the form $y_p = (at + b)e^{-4t}$.)
 (b) Use a similar approach as above to find a solution to the differential equation $y'' + 3y' + 2y = t^2e^{-2t}$.

(4) Find the general solution of $y'' + 2y' + 2y = e^{-2t} \sin t$. (Look for a particular solution of the form $y_p = e^{-2t}(a \cos t + b \sin t)$.)

(5) For the following exercises, rewrite the given function in the form
\[y = A \cos(\omega t - \phi) = A \cos \left(\omega \left(t - \frac{\phi}{\omega} \right) \right), \]
and then plot the graph of this function.
 (a) $y = \cos 2t + \sin 2t$
 (b) $y = \cos t - \sin t$
 (c) $y = \cos 4t + \sqrt{3} \sin 4t$
 (d) $y = -\sqrt{3} \cos 2t + \sin 2t$.