MTHSC 208 (Differential Equations)

Dr. Matthew Macauley

HW 17

Due Friday November 13th, 2009

(1) The function

$$f(x) = \begin{cases} 0 & -\pi \le x < -\pi/2, \\ 1 & -\pi/2 \le x < \pi/2, \\ 0 & \pi/2 \le x \le \pi, \end{cases}$$

can be extended to be periodic of period 2π . Sketch the graph of the resulting function, and compute its Fourier series.

(2) The function

$$f(t) = |x|, \quad \text{for } x \in [-\pi, \pi]$$

can be extended to be periodic of period 2π . Sketch the graph of the resulting function, and compute its Fourier series.

(3) The function

$$f(x) = \begin{cases} 0 & -\pi \le x < 0, \\ x & 0 \le x \le \pi, \end{cases}$$

can be extended to be periodic of period 2π . Sketch the graph of the resulting function, and compute its Fourier series.

(4) Consider the 2π -periodic function defined by

$$f(x) = \begin{cases} x^2 & -\pi \le x < \pi, \\ f(x - 2k\pi), & -\pi + 2k\pi \le x < \pi + 2k\pi. \end{cases}$$

Sketch this function and compute its Fourier series.

(5) Find the Fourier series of the following functions without computing any integrals.

- (a) $f(x) = 2 3\sin 4x + 5\cos 6x$,
- (b) $f(x) = \sin^2 x$ [Hint: Use a standard trig identity.]

(6) Determine which of the following functions are even, which are odd, and which are neither even nor odd:

- (a) $f(t) = x^3 + 3x$.
- (b) $f(t) = x^2 + |x|$.
- (c) $f(t) = e^x$. (d) $f(t) = \frac{1}{2}(e^x + e^{-x})$. (e) $f(t) = \frac{1}{2}(e^x e^{-x})$.