MTHSC 208 (Differential Equations)

Dr. Matthew Macauley HW 18

Due Monday November 16th, 2009

- (1) Suppose that f is a function defined on \mathbb{R} (not necessarily periodic). Show that there is an odd function f_{odd} and an even function f_{even} such that $f(x) = f_{\text{odd}} + f_{\text{even}}$. Hint: As a guiding example, suppose $f(x) = e^x$, and consider $\cos x = \frac{1}{2}(e^x + e^{-x})$ and $i \sin x = \frac{1}{2}(e^x e^{-x})$.
- (2) Express the y-intercept of $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$ in terms of the a_n 's and b_n 's. (*Hint*: It's not a_0 or $a_0/2!$)
- (3) Consider the 2π -periodic function $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$. Write the Fourier series for the following functions:
 - (a) The reflection of f(x) across the y-axis;
 - (b) The reflection of f(x) across the x-axis;
 - (c) The reflection of f(x) across the origin.
- (4) (a) The Fourier series of an odd function consists only of sine-terms. What additional symmetry conditions on f will imply that the sine coefficients with even indices will be zero (i.e., each $b_{2n}=0$)? Give an example of a non-zero function satisfying this additional condition.
 - (b) What symmetry conditions on f will imply that the sine coefficients with odd indices will be zero (i.e., each $b_{2n+1} = 0$)? Give an example of a non-zero function satisfying this additional condition.
 - (c) Sketch the graph of a non-zero even function, such that $a_{2n} = 0$ for all n.
 - (d) Sketch the graph of a non-zero even function, such that $a_{2n+1} = 0$ for all n.
- (5) Consider the function defined on the interval $[0, \pi]$:

$$f(x) = \begin{cases} x & \text{for } 0 \le x < \pi/2, \\ \pi - x, & \text{for } \pi/2 \le x \le \pi. \end{cases}$$

- (a) Sketch the even extension of this function and find its Fourier cosine series.
- (b) Sketch the odd extension of this function and find its Fourier sine series.
- (6) Consider the function defined on the interval $[0, \pi]$:

$$f(x) = x(\pi - x).$$

- (a) Sketch the even extension of this function and find its Fourier cosine series.
- (b) Sketch the odd extension of this function and find its Fourier sine series.