MTHSC 208 (Differential Equations) Dr. Matthew Macauley HW 19 Due Friday November 20th, 2009

(1) (a) Find the complex Fourier coefficients of the function

$$f(t) = x^2 \qquad \text{for } -\pi < x \le \pi,$$

extended to be periodic of period 2π .

- (b) Find the real form of the Fourier series. *Hint:* Use $a_n = c_n + c_{-n}$, and $b_n = c_n + c_{-n}$. $i(c_n - c_{-n}).$
- (2) Compute the complex Fourier series for the function defined on the interval $[-\pi,\pi]$:

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 4, & 0 \le x \le \pi. \end{cases}$$

Use the c_n 's to find the coefficients of the real Fourier series (the a_n 's and b_n 's).

(3) Find the real and complex Fourier series for the function defined on the interval $[-\pi,\pi]$:

$$f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 1, & 0 \le x \le \pi. \end{cases}$$

Only compute one of these directly (your choice), and then use the formulas relating the real and complex coefficients to compute the other.

- (4) Compute the complex Fourier series for the function $f(x) = \pi x$ defined on the interval $[-\pi,\pi]$. Use the c_n 's to to find the coefficients of the real version of the Fourier series.
- (5) Prove Parseval's identity:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 \, dx = \frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \; .$$

- (6) Use Parseval's identity, and the Fourier series of the function $f(x) = x^2$ on $[-\pi, \pi]$, to (6) Use Parsetal structure, and the Fourier series of the function f(x) = x on [-x, x], to compute ∑[∞]_{n=1} 1/n⁴.
 (7) Compute ∑[∞]_{n=0} 1/(2n+1)². Hint: Compute the Fourier series for f(x) = |x|, and then look at f(x) (Bergeren k identifier not not here do d).
- at $f(\pi)$ (Parseval's identity not needed!).