(1) Find the particular solution to the following 2nd order linear homogeneous ODEs.
 (a) \(y'' - y' - 2y = 0 \), \(y(0) = -1 \), \(y'(0) = 2 \)
 (b) \(y'' - 4y' - 5y = 0 \), \(y(1) = -1 \), \(y'(1) = -1 \)
 (c) \(y'' + 25y = 3 \), \(y(0) = 1 \), \(y'(0) = -1 \)
 (d) \(y'' - 2y' + 17y = 0 \), \(y(0) = -2 \), \(y'(0) = 3 \)

(2) Find the general solution to the following 2nd order linear inhomogeneous ODEs, by solving
 the associated homogeneous equation, and then finding a constant (particular) solution.
 (a) \(y'' + y' - 12y = 24 \)
 (a) \(y'' = -4y + 3 \)

(3) As we’ve seen, to solve ODE of the form
 \[y'' + py' + qy = 0, \quad p \text{ and } q \text{ constants} \]
 we assume that the solution has the form \(e^{rt} \), and then we plug this back into the ODE to
 get the characteristic equation: \(r^2 + pr + q = 0 \). Given that this equation has a double root
 \(r = r_1 \) (i.e., the roots are \(r_1 = r_2 \)), show by direct substitution that \(y = te^{rt} \) is a solution
 of the ODE, and then write down the general solution. [Hint: If there’s a double-root,
 then it must be \(-\frac{p}{2}\). Why?]

(4) Suppose that \(z(t) = x(t) + iy(t) \) is a solution of
 \[z'' + pz' + qz = Ae^{i\omega t}. \]
 Substitute \(z(t) \) into this equation above. Then compare (equate) the real and imaginary
 parts of each side to prove two facts:
 \[x'' + px' + qx = A \cos \omega t \]
 \[y'' + py' + qy = A \sin \omega t. \]
 Write a sentence or two summarizing the significance of this result.

(5) Solve the following initial value problems using the method of undetermined coefficients.
 (a) \(y'' + 3y' + 2y = -3e^{-4t}, \quad y(0) = 1, \quad y'(0) = 0 \)
 (b) \(y'' + 2y' + 2y = 2 \cos 2t, \quad y(0) = -2, \quad y'(0) = 0 \)
 (c) \(y'' + 4y' + 4y = 4 - t, \quad y(0) = -1, \quad y'(0) = 0 \)
 (d) \(y'' - 2y' + y = t^3, \quad y(0) = 1, \quad y'(0) = 0 \)