MthSc 208, Fall 2010 (Differential Equations) Dr. Matthew Macauley HW 13 Due Friday October 15th, 2010

(1) Find the Laplace transform of the following functions by explicitly computing $\int_{0}^{\infty} f(t) e^{-st} dt$.

- (a) f(t) = 3
- (b) $f(t) = e^{3t}$
- (c) $f(t) = \cos 2t$
- (d) $f(t) = te^{2t}$
- (e) $f(t) = e^{-3t} \sin 2t$
- (2) Sketch each of the following piecewise defined functions, and compute their Laplace transforms.

(a)
$$f(t) = \begin{cases} 0, & 0 \le t < 4\\ 5, & t \ge 4 \end{cases}$$
 (b) $f(t) = \begin{cases} t, & 0 \le t < 3\\ 3, & t \ge 3 \end{cases}$

(3) Engineers frequently use the *Heavyside function*, defined by

$$H(t) = \begin{cases} 0, & t < 0\\ 1, & t \ge 0 \end{cases}$$

to emulate turning on a switch at a certain instance in time. Sketch the graph of the function $x(t) = e^{0.2t}$ and compute its Laplace transform, X(s). On a different set of axes, sketch the graph of

$$y(t) = H(t-3)e^{0.2t}$$

and calculate its Laplace transform, Y(s). How do X(s) and Y(s) differ? What do you think the Laplace transform of $H(t-c)e^{0.2t}$ is, where c is an arbitrary positive constant?

- (4) Find the Laplace transform of the following functions by using a table of Laplace transforms
 - (a) f(t) = -2
 - (b) $f(t) = e^{-2t}$
 - (c) $f(t) = \sin 3t$
 - (d) $f(t) = te^{-3t}$
 - (e) $f(t) = e^{2t} \cos 2t$
- (5) Transform the given initial value problem into an algebraic equation involving $Y(s) := \mathcal{L}(y)$, and solve for Y(s).
 - (a) $y'' + y = \sin 4t$, y(0) = 0, y'(0) = 1
 - (b) $y'' + y' + 2y = \cos 2t + \sin 3t$, y(0) = -1, y'(0) = 1
 - (c) $y' + y = e^{-t} \sin 3t$, y(0) = 0
- $(6)\ \mbox{Find}$ the inverse Laplace transform of the following functions.

(a)
$$Y(s) = \frac{2}{3-5s}$$

(b) $Y(s) = \frac{1}{s^2+4}$
(c) $Y(s) = \frac{5s}{s^2+9}$
(d) $Y(s) = \frac{3}{s^2}$
(e) $Y(s) = \frac{3s+2}{s^2+25}$
(f) $Y(s) = \frac{2-5s}{s^2+9}$
(g) $Y(s) = \frac{3s+2}{(s+2)^2+4}$
(h) $Y(s) = \frac{3s+2}{s^2+4s+29}$

(i)
$$Y(s) = \frac{2s-2}{(s-4)(s+2)}$$

(j) $Y(s) = \frac{3s^2+s+1}{(s-2)(s^2+1)}$