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(1) For each initial value problem, sketch the forcing term, and then solve for y(t). Write your
solution as a piecewise function (i.e., not using the Heavysie function). Recall that the
function Hab(t) = H(t− a)−H(t− b) is the interval function.
(a) y′′ + 4y = H01(t), y(0) = 0, y′(0) = 0
(b) y′′ + 4y = tH01(t), y(0) = 0, y′(0) = 0

(2) Define the function

δεp(t) =
1

ε
(Hp(t)−Hp+ε(t)) .

(a) Show that the Laplace transform of δεp(t) is given by

L
{
δεp(t)

}
= e−sp

1− e−sε

sε
.

(b) Use l’Hôpital’s rule to take the limit of the result in part (a) as ε→ 0. How does this
result agree with the fact that L{δp(t)} = e−sp?

(3) Use a Laplace transform to solve the follosing initial value problem:

y′ = δp(t), y(0) = 0

How does your answer support what engineers like to say, that the “derivative of a unit
step is a unit impulse”?

(4) Define the function

Hε
p(t) =

 0, 0 ≤ t < p
1
ε (x− p), p ≤ t < p+ ε
1, t ≥ p+ ε

(a) Sketch the graph of Hε
p(t).

(b) Without being too precise about things, we could argue that Hε
p(t)→ Hp(t) as ε→ 0,

where Hp(t) = H(t− p). Sketch the graph of the derivative of Hε
p(t).

(c) Compare your result in (b) with the graph of δεp(t). Argue that H ′p(t) = δp(t).
(5) Solve the following initial value problems.

(a) y′′ + 4y = δ(t), y(0) = 0, y′(0) = 0
(b) y′′ − 4y′ − 5y = δ(t), y(0) = 0, y′(0) = 0


