1. Solve the following differential equations:

 (a) \(y'' + 6y' + 9y = 5 \)
 (b) \(y'' = -\omega^2 y \)
 (c) \(y' + 2y = e^t \)
 (d) \(y' + 3y = 0 \).

2. Find the Laplace transform of the following functions by explicitly computing \(\int_0^\infty f(t) e^{-st} \, dt \).

 (a) \(f(t) = 3 \)
 (b) \(f(t) = e^{3t} \)
 (c) \(f(t) = \cos 2t \)
 (d) \(f(t) = te^{2t} \)
 (e) \(f(t) = e^{-3t} \sin 2t \)

3. Sketch each of the following piecewise defined functions, and compute their Laplace transforms.

 (a) \(f(t) = \begin{cases}
 0, & 0 \leq t < 4 \\
 5, & t \geq 4
 \end{cases} \)
 (b) \(f(t) = \begin{cases}
 t, & 0 \leq t < 3 \\
 3, & t \geq 3
 \end{cases} \)

4. Engineers frequently use the *Heavyside function*, defined by

\[
H(t) = \begin{cases}
0, & t < 0 \\
1, & t \geq 0
\end{cases}
\]

 to emulate turning on a switch at a certain instance in time. Sketch the graph of the function \(x(t) = e^{0.2t} \) and compute its Laplace transform, \(X(s) \). On a different set of axes, sketch the graph of

\[
y(t) = H(t - 3)e^{0.2t}
\]

 and calculate its Laplace transform, \(Y(s) \). How do \(X(s) \) and \(Y(s) \) differ? What do you think the Laplace transform of \(H(t - c)e^{0.2t} \) is, where \(c \) is an arbitrary positive constant?

5. Find the Laplace transform of the following functions by using a table of Laplace transforms

 (a) \(f(t) = -2 \)
 (b) \(f(t) = e^{-2t} \)
 (c) \(f(t) = \sin 3t \)
 (d) \(f(t) = te^{-3t} \)
 (e) \(f(t) = e^{2t} \cos 2t \)
6. Transform the given initial value problem into an algebraic equation involving \(Y(s) := \mathcal{L}(y) \), and solve for \(Y(s) \).

(a) \(y'' + y = \sin 4t, \ y(0) = 0, \ y'(0) = 1 \)

(b) \(y'' + y' + 2y = \cos 2t + \sin 3t, \ y(0) = -1, \ y'(0) = 1 \)

(c) \(y' + y = e^{-t} \sin 3t, \ y(0) = 0 \)