Week 14 & 15 summary:

- **Partial differential equation (PDE)**: Equations involving a multivariate function and its partial derivatives.

- **Heat equation**: \(u_t = c^2 u_{xx} \), \(u(x,t) \) = temp. at pos. \(x \), time \(t \).

 - **Boundary conditions**: e.g., \(u(0,t) = u(L,t) = 0 \)
 - **Initial condition**: e.g., \(u(x,0) = f(x) \)

- **Solving the heat equation**: \(u_t = c^2 u_{xx} \)
 - Assume \(u(x,t) = f(x)g(t) \). Compute \(u_t, u_{xx} \), "zero-boundary condition".
 - Plug back in and separate variables, set equal to \(\lambda \).
 - Solve ODE's for \(g(t) \) and \(f(x) \), and determine \(\lambda \).
 - Get a sol'n \(u_n(x,t) = f_n(x)g_n(t) \) for each \(n \).
 - Gen'l sol'n is \(u(x,t) = \sum_{n=0}^{\infty} u_n(x,t) \) (superposition)
 - Plug in \(t=0 \) & use initial condition (may require finding a Fourier sine or cosine series).

- **Boundary conditions** for the heat equation:
 - **Dirichlet**: specify the value, e.g., \(u(0,t) = T_1 \), \(u(L,t) = T_2 \)
 - **von Neumann**: specify the derivative, e.g., \(u_x(0,t) = 0 \), \(u_x(L,t) = 0 \).

 This represents insulated endpoints.

If boundary conditions are non-zero: \(u(x,t) = u_h(x,t) + u_{ss}(x) \).
Wave equation: \(u_{tt} = c^2 u_{xx} \)

Boundary conditions: \(u(0, t) = u(L, t) = 0 \)

Initial conditions: \(u(x, 0) = h_1(x) \) "initial position"
\(u_t(x, 0) = h_2(x) \) "initial velocity"

Main difference: \(g(t) = a \cos(c x t) + b \sin(c x t) \) instead of \(A e^{-c^2 x t} \)