Consider the system of differential equations:
\[
\begin{align*}
 x_1' &= -x_1 - x_2 \\
 x_2' &= x_1 - 3x_2
\end{align*}
\]

1. Write this in matrix form, \(x' = Ax + b \).

2. Knowing that \(A \) has a repeated eigenvalue, \(\lambda_{1,2} = -2 \), and one eigenvector, \(\mathbf{v}_1 = (1, 1) \), write down a solution \(x_1(t) \) to \(x' = Ax \).

3. To find a second solution, assume that \(x_2(t) = te^{\lambda t}\mathbf{v} + e^{\lambda t}\mathbf{w} \). Plug this back into \(x' = Ax \) and equate coefficients (of \(te^{-\lambda t} \) and \(e^{\lambda t} \)) to get a system of two equations, involving \(\mathbf{v}, \mathbf{w}, \) and \(A \).
4. Solve for v by inspection. Plug this back into the second equation and solve for w (it will involve a constant, C).

5. Using what you got for $v(t)$ and $w(t)$, write down a solution $x_2(t)$ that is not a scalar multiple of x_1. (Pick the simplest value of C that works.)

6. Write down the general solution, $x(t)$.

7. As $t \to \infty$, which of the three terms of $x(t)$ “goes to zero slower”? Use this intuition to sketch the phase portrait.