Consider the initial value problem \(y'' + y = f(t), \ y(0) = 0, \ y'(0) = 1, \) where \(f(t) = \begin{cases} 2t, & 0 \leq t \leq 1 \\ 2, & t > 1 \end{cases} \)

1. Sketch \(f(t) \), and write it using the Heavyside function.

2. Take the Laplace transform of the differential equation, and solve for \(Y(s) \).
3. Use partial fractions to decompose $Y(s)$ into four terms. [Note: \(\frac{1}{s^2(s^2+1)} = \frac{1}{s^2} - \frac{1}{s^2+1} \)]

4. Apply the inverse Laplace transform to each term and write the solution to the IVP using the Heavyside function.

5. Write the solution as a piecewise function (i.e., *not* using the Heavyside function).