We will solve for the function $u(x,y,t)$ defined for $0 \leq x, y \leq \pi$ and $t \geq 0$ which satisfies the following initial value problem of the heat equation:

\[
\begin{align*}
\frac{\partial u}{\partial t} &= c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \\
\left. u \right|_{t=0} &= 2 \sin x \sin 2y + 3 \sin 4x \sin 5y.
\end{align*}
\]

(a) Carefully describe (and sketch) a physical situation that this models.

(b) Assume that $u(x,y,t) = f(x,y)g(t)$. Compute u_{xx}, u_{yy}, and u_t, find boundary conditions for $f(x,y)$.

\[
\begin{align*}
\left. u \right|_{t=0} &= 2 \sin x \sin 2y + 3 \sin 4x \sin 5y.
\end{align*}
\]
(c) Plug \(u = fg \) back into the PDE and separate variables by dividing both sides of the equation by \(c^2fg \). Set this equal to a constant \(\lambda \), and write down two equations: an ODE for \(g(t) \), and a PDE \(f(x, y) \) (called the Helmholtz equation), with four boundary conditions.

(d) Solve the ODE for \(g(t) \).

(e) To solve the PDE for \(f \), assume that \(f(x, y) = X(x)Y(y) \). Plug this back in and separate variables. [For consistency, put the \(X''/X \) term on one side of the equation, and set equal to a constant \(\mu \).]
(f) Write down two ODEs – one for $X(x)$ and one for $Y(y)$, and include boundary conditions for both.

Hint: It is easier notationally if you introduce a new constant, $\nu := \lambda - \mu$.

(g) Solve the ODEs for $X(x)$ and $Y(y)$, and determine μ and ν (and hence λ). You should get a λ for each choice of positive integers $n, m \in \mathbb{N}$, call it λ_{nm}.

(h) For each $n, m \in \mathbb{N}$, we have a solution $u_{nm}(x, y, t) = f_{nm}(x, y)g_{nm}(t)$. Write down this solution.
(i) Find the general solution of the PDE. It will be a doubly infinite sum (superposition) of solutions:
\[\sum_{n,m \in \mathbb{N}} u_{nm}(x, y, t). \]

(g) Find the particular solution to the initial value problem by using the initial condition.

(h) What is the long-term behavior of the system? Give a mathematical, and physical, justification.