MthSc 985: Topics in Discrete Mathematical Biology Midterm October 31, 2011

NAME:

Instructions

- Exam time is 50 minutes
- Open notes / book / everything.
- Show your work. Partial credit will be given.

Question	Points Earned	Maximum Points
1		20
2		20
3		20
4		20
5		20
Total		100

(b) For both secondary and pseudoknot structures, there are additional restrictions on e.g., arc length and stack size, that lead to the notion of a *canonical* structure. Give these additional requirements, as well as biophysical justifications for why we impose them.

2. (a) Draw an RNA strand that exhibits a pseudoknot structure, as a 5-noncrossing (but *not* 4-noncrossing) arc diagram. Draw the diagram and an actual RNA strand that it represents.

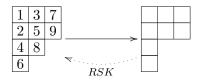
(b) Recall the canonical bijection ψ from *-tableaux to arc diagrams. Compute $\psi^{-1}(G_n)$, where G_n is your diagram from Part (a).

- 3. Let $\delta \in \mathcal{T}_{k,\sigma}(n)$ be a k-noncrossing, σ -canonical RNA structure.
 - (a) Define a *hairpin loop* of δ purely combinatorially. Assume that the endpoints of the loop are i and j, with i < j.

(b) Suppose that δ has shape $\gamma \in \mathcal{I}_k(s, m)$ (that is, s arcs, of which m are 1-arcs). What can you say about the number of hairpin loops that δ has? Justify your answer.

4. (a) Starting with the empty Young tableau, apply the RSK-algorithm to the following sequence: 9, 1, 4, 8, 5, 2, 6, 3, 7. Draw the resulting Young tableau.

(b) Find the unique Young tableau T_i (at right) with the given shape such that inserting a number into T_i via RSK gives T_{i-1} (at left).



5. In class, we constructed the combinatorial class \mathcal{T}_{γ} of all k-noncrossing, σ -canonical RNA structures (that is, minimum arc length $\lambda = 2$) that have shape $\gamma \in \mathcal{I}_k(s, m)$:

$$\mathcal{T}_{\gamma} = [\mathcal{K}_{\sigma} \times \operatorname{Seq}(\mathcal{N}_{\sigma})] \times [\mathcal{L}^{2s+1-m} \times (\mathcal{Z} \times \mathcal{L})^m].$$

Here, \mathcal{Z} is the class of vertices, \mathcal{L} is the class of vertex sequences, \mathcal{K}_{σ} is the class of stacks, and \mathcal{N}_{σ} the class of induced stacks.

Modify this construction to create the combinatorial class \mathcal{F}_{γ} of all k-noncrossing, σ -canonical diagrams that have shape $\gamma \in \mathcal{I}_k(s, m)$. (That is, drop the minimum arc length $\lambda = 2$ requirement.)