Read: Strang, Section 1.1, 1.2, and 2.1.

1. For each vector \mathbf{v} , compute its norm, $||\mathbf{v}|| = (\mathbf{v} \cdot \mathbf{v})^{1/2}$, and then normalize it, by computing $\mathbf{v}/||\mathbf{v}||$.

$$u = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad w = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.$$

2. For a unit vector n, the *projection* of v onto n is the quantity $v \cdot n$. This measures the magnitude of v in the n-direction. Consider the following four unit vectors:

$$m{e}_1 = egin{bmatrix} 1 \ 0 \end{bmatrix}, \qquad m{e}_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}, \qquad m{n}_1 = egin{bmatrix} \sqrt{2}/2 \ \sqrt{2}/2 \end{bmatrix}, \qquad m{n}_2 = egin{bmatrix} -\sqrt{2}/2 \ \sqrt{2}/2 \end{bmatrix}.$$

- (a) Draw the vectors $\{e_1, e_2\}$ in \mathbb{R}^2 , and sketch the square "grid" that they determine. Do the same thing for $\{n_1, n_2\}$ but on a new set of axes.
- (b) Write the vector $\mathbf{w} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ as a linear combination of $\{\mathbf{e}_1, \mathbf{e}_2\}$. That is, write $\mathbf{w} = a_1\mathbf{e}_1 + a_2\mathbf{e}_2$ and determine $a_1, a_2 \in \mathbb{R}$. Then, write \mathbf{w} as a linear combination of $\{\mathbf{n}_1, \mathbf{n}_2\}$.
- (c) Sketch \boldsymbol{w} on both sets of axes, and show how these sketches match your answers to Part (b).
- (d) The 2×2 matrix $\mathbf{A} = [\mathbf{n}_1 \ \mathbf{n}_2]$ can be thought of as a *linear map*, $\mathbf{A} \colon \mathbb{R}^2 \to \mathbb{R}^2$. Describe this linear map (geometrically) in a sentence. [*Hint*: You can think of the "input" as one of your grids, and the "output" as the other grid.]
- 3. A set $\{v_1, \ldots, v_n\}$ of vectors is *orthogonal* (or *perpendicular*) if $v_i \cdot v_j = 0$ for all $i \neq j$. The set is furthermore *orthonormal* if each v_i is a unit vector. That is, if

$$v_i \cdot v_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

(a) Show that the set of vectors $\{v_1, v_2, v_3\}$, where

$$oldsymbol{v}_1 = egin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \quad oldsymbol{v}_2 = egin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad oldsymbol{v}_3 = egin{bmatrix} -4 \\ 1 \\ -1 \end{bmatrix}.$$

is an orthogonal set, but not orthonormal.

- (b) Normalize v_1 , v_2 , and v_3 to get an orthonormal basis of \mathbb{R}^3 , $\{n_1, n_2, n_3\}$.
- (c) Express the vector $\mathbf{w} = (1, 2, 3)$ in terms of \mathbf{n}_1 , \mathbf{n}_2 , and \mathbf{n}_3 . That is, find a_1 , a_2 , and a_3 such that

$$oldsymbol{w} = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} = a_1 oldsymbol{n}_1 + a_2 oldsymbol{n}_2 + a_3 oldsymbol{n}_3 \,.$$

- (d) Express the vector \boldsymbol{w} as a linear combination of \boldsymbol{v}_1 , \boldsymbol{v}_2 , and \boldsymbol{v}_3 . That is, write $\boldsymbol{w} = b_1 \boldsymbol{v}_1 + b_2 \boldsymbol{v}_2 + b_3 \boldsymbol{v}_3$ and find a formula for each b_i . [Hint: It should be in entirely in terms of dot products of \boldsymbol{v}_i and \boldsymbol{w} . Start by substituting $\boldsymbol{v}_i/||\boldsymbol{v}_i||$ in for \boldsymbol{n}_i in your answer to Part (c).]
- 4. Consider the matrix $\mathbf{A} = [\mathbf{u} \ \mathbf{v} \ \mathbf{w}] = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.
 - (a) Find a non-zero linear combination $x_1 \boldsymbol{u} + x_2 \boldsymbol{v} + x_3 \boldsymbol{w}$ of the column vectors of \boldsymbol{A} that gives the zero vector.
 - (b) Describe the set of all solutions to $x_1 \mathbf{u} + x_2 \mathbf{v} + x_3 \mathbf{w} = \mathbf{0}$. [Hint: It is a line. Which line is it?]
 - (c) Describe the set of all linear combinations $x_1 \mathbf{u} + x_2 \mathbf{v} + x_3 \mathbf{w}$. We say that this is the subspace of \mathbb{R}^3 that is spanned by the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
- 5. Given an $n \times m$ matrix $\mathbf{A} = [a_{ij}]$, the *transpose* of \mathbf{A} is an $m \times n$ matrix defined as $\mathbf{A}^T = [a_{ji}]$. For each of the following three matrices \mathbf{M} , compute its transpose \mathbf{M}^T , as well as the products $\mathbf{M}^T \mathbf{M}$ and $\mathbf{M} \mathbf{M}^T$.

$$m{A} = egin{bmatrix} a \\ b \\ c \end{bmatrix}, \qquad m{B} = egin{bmatrix} 1 & -2 \\ -1 & 3 \\ 0 & 4 \end{bmatrix}, \qquad m{C} = egin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

6. Consider the following vectors \boldsymbol{u} , \boldsymbol{v} , \boldsymbol{w} , and the matrix $\boldsymbol{A} = [\boldsymbol{u} \ \boldsymbol{v} \ \boldsymbol{w}]$:

$$oldsymbol{u} = egin{bmatrix} u_1 \ u_2 \ u_3 \end{bmatrix}, \quad oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix}, \quad oldsymbol{w} = egin{bmatrix} w_1 \ w_2 \ w_3 \end{bmatrix}, \quad oldsymbol{A} = egin{bmatrix} u_1 & v_1 & w_1 \ u_2 & v_2 & w_2 \ u_3 & v_3 & w_3 \end{bmatrix}.$$

- (a) Write out $\mathbf{A}^T \mathbf{A}$ in terms of the dot products of \mathbf{u} , \mathbf{v} and \mathbf{w} .
- (b) Write out $A^T A$ and in terms of the vectors u, v and w and their transposes, but not their individual entries. [Recall that $u \cdot v = u^T v$.]
- (c) Give a complete characterization of which matrices \boldsymbol{A} have the property that $\boldsymbol{A}^T\boldsymbol{A} = \boldsymbol{I}$, where \boldsymbol{I} is the *identity matrix*. Give a geometric description of your answer in terms of the column vectors.