Read: Strang, Section 2.4, 2.5, 2.6, 2.7

Suggested short conceptual exercises: Strang, Section 2.4, #2, 7, 11, 14, 32, 33. Section 2.5, #11, 15, 29. Section 2.7, #3–5, 8, 11, 12–16, 19.

1. Let A, B, and C be $n \times n$ matrices.
 (a) If A is invertible and $AB = AC$, prove that $B = C$.
 (b) Find an example of three nonzero matrices such that $AB = AC$ but $B \neq C$.
 (c) Suppose that $B = C^{-1}AC$ is invertible. Find formulas for A, A^{-1}, and B^{-1}.

2. Let A be a 3×3 matrix where row 1 + row 2 = row 3. Give elementary answers to the following questions (that is, do not use terms such as “column space” or “nullspace”.)
 (a) Explain why $Ax = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ cannot have a solution.
 (b) Which vectors $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ might allow a solution to $Ax = b$? [Hint: Find a linear equation relating b_1, b_2, and b_3.]
 (c) What happens to row 3 in elimination?

3. Let A be a 3×3 matrix where column 1 + column 2 = column 3.
 (a) Find a nonzero solution to $Ax = 0$.
 (b) Elimination keeps column 1 + column 2 = column 3. Explain why there is no third pivot. Conclude that A is not invertible.

4. Let A be an invertible 3×3 matrix, and let B be the matrix obtained from A by taking the bottom row and making it the top row instead (and so the first and second rows of A become the second and third rows of B, respectively).
 (a) Find the permutation matrix P that you need to multiply A by to get B. Do you need to multiply on the left or on the right?
 (b) What is P^{-1}?
 (c) Find simple formulas for B^{-1} and B^T.

5. Consider the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$.
 (a) What three elementary matrices E_{21}, E_{31}, and E_{32} put A into its upper triangular form, $E_{32}E_{31}E_{21}A = U$?
(b) Multiply by E_{32}^{-1}, E_{31}^{-1} and E_{21}^{-1} to factor A into $A = LU$, where $L = E_{31}^{-1}E_{32}^{-1}E_{21}^{-1}$ is a lower triangular matrix whose entries are the multipliers of elimination and U is an upper triangular matrix with the pivots on the diagonal.

(c) Factor $U = DU_1$, where D is a diagonal matrix that contains the pivots.

(d) Factor $A = LDU_1$, where L is a lower triangular matrix with 1s on the diagonal and whose other entries are the multipliers, D is a diagonal matrix that contains the pivots, and U_1 is an upper triangular matrix with 1s on the diagonal.

6. Let A be a 3×3 matrix. Suppose you want to do the following operations on A: Subtract row 1 from row 2, subtract row 1 from row 3, and subtract row 2 from row 3.

(a) First, suppose you want to perform these operations on A simultaneously. Write down a matrix B that you need to multiply A by to achieve this. Does AB or BA yield the desired result? What is B^{-1}? [Hint: You should be able to find B^{-1} by inspection, but it’s not quite a simple as flipping the signs of the entries below the diagonal.]

(b) Now, suppose you want to perform these operations on A sequentially. Write down a matrix E that you need to multiply A by to achieve this. It should be the product of three elementary matrices [Hint: It should not the same matrix as B from Part (a)]. What is E^{-1}.

(c) Suppose you factor $A = LU$, where U is the upper triangular matrix with the pivots on the diagonal, and L is lower-triangular. What is the relationship between L and E?

7. A matrix is symmetric if $A^T = A$. Factor the following matrices into $A = LDL^T$.

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}, \quad \quad A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Note that for any symmetric matrix, the $A = LDU$ factorization simplifies to $A = LDL^T$.