Read: Strang, Section 4.1, 4.2.

Suggested short conceptual exercises: Strang, Section 4.1, #1, 2, 4, 5, 8–10, 13, 15, 18,–21, 24–29. Section 4.2, #13, 18, 21–28.

- 1. Construct a nonzero matrix \boldsymbol{A} with the required property or say why it is impossible:
 - (a) The column space contains $\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$, and the nullspace contains $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
 - (b) The row space contains $\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$, and the nullspace contains $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
 - (c) $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ has a solution and $\mathbf{A}^T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 - (d) Every row is orthogonal to every column.
 - (e) The sum of the columns is the zero vector, and the sum of the rows is a vector with all 1's.
- 2. Consider the following system of equations Ax = b:

$$x + 2y + 2z = b_1$$
$$2x + 2y + 3z = b_2$$
$$3x + 4y + 5z = b_3.$$

- (a) Find numbers y_1 , y_2 , y_3 to multiply the left-hand sides of the equations so they add to 0. You have found a vector \boldsymbol{y} in which subspace? Write $\boldsymbol{y}^T\boldsymbol{b}=0$ in terms of b_1 , b_2 , and b_3 ?
- (b) Using orthogonality of subspaces, what must be the case about \boldsymbol{y} and $\boldsymbol{b} = (b_1, b_2, b_3)$ for there to be a solution to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$? Does this condition hold for $\boldsymbol{b} = (5, 5, 9)$?
- (c) What happens when we left-multiply both sides of the equation $\mathbf{A}\mathbf{x} = (5, 5, 9)$ by \mathbf{y}^T , where \mathbf{y} is from Part (a)?
- 3. For each matrix, accurately sketch the four fundamental subspaces on two \mathbb{R}^2 plots so that orthogonal pairs of subspaces are plotted together. This is the "grid picture."

$$m{A} = egin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \qquad \qquad m{B} = egin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix} \,.$$

- 4. For a set S, let S^{\perp} denote the *orthogonal complement* of S, i.e., the set of vectors orthogonal to all vectors in S. Note that even if S is not a subspace, S^{\perp} is.
 - (a) If S is the subspace of \mathbb{R}^3 containing only the zero vector, what is S^{\perp} ? (Find a basis.)

- (b) If S is spanned by (1,1,1), what is S^{\perp} ? (Find a basis.)
- (c) If S is spanned by (1,1,1) and (1,1,-1), what is a basis for S^{\perp} ? (Find a basis.)
- (d) Now, suppose S is not a subspace, but rather just the set containing the two vectors (1,1,1) and (1,1,-1). What is S^{\perp} ? It is the nullspace of what matrix?
- (e) Suppose S is a set of vectors (not necessarily a subspace). Describe as concisely as possible what subspace $(S^{\perp})^{\perp}$ is. What is the relation between S and $(S^{\perp})^{\perp}$ when S actually is a subspace.
- 5. Let $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ and $\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
 - (a) Project **b** onto the line through **a**. Check that e = b p is orthogonal to **a**.
 - (b) Find the projection matrix $P = \frac{aa^T}{a^Ta}$ onto the line through a. Verify that $P^2 = P$. Multiply Pb to compute the projection p.
- 6. Let $\mathbf{a}_1 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.
 - (a) Compute the projection matrices P_1 and P_2 onto the lines through a_1 and a_2 . Multiply those matrices and explain geometrically why P_1P_2 is what it is.
 - (b) Project $\mathbf{b} = (1, 0, 0)$ onto the lines through \mathbf{a}_1 and \mathbf{a}_2 and also onto \mathbf{a}_3 . Add up the three projections $\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3$.
 - (c) Find the projection matrix P_3 onto a_3 . Verify that $P_1 + P_2 + P_3 = I$. This means that the basis a_1, a_2, a_3 is orthogonal! (Think about why.)
- 7. Suppose P is a projection matrix onto the column space of A.
 - (a) Show that the matrix I P is also a projection matrix by verifying that $(I P)^T = I P$ and $(I P)^2 = I P$ both hold.
 - (b) What subspace does the matrix I P project onto? [Hint: Note that b = Pb + (I P)b holds for any vector b!]
- 8. Consider the plane \mathcal{P} in \mathbb{R}^3 given by x y 2z = 0.
 - (a) Find a matrix whose columns are a basis for \mathcal{P} .
 - (b) Compute $\mathbf{P} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$, which is the projection matrix onto \mathcal{P} .
 - (c) Find a vector e that is orthogonal to \mathcal{P} . Compute the projection matrix $\mathbf{Q} = e\mathbf{e}^T/\mathbf{e}^T\mathbf{e}$ and $\mathbf{I} \mathbf{Q}$. How are \mathbf{P} and \mathbf{Q} related?