Read: Strang, Section 6.1, 6.2.

Suggested short conceptual exercises: Strang, Section 6.1, #1, 7, 8, 13, 16, 17, 19, 23, 25, 29. Section 6.2, #3-5, 7, 11-14, 20-22, 24, 25, 29, 30, 32, 34.

1. Consider the following matrices:

$$\boldsymbol{A} = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{A}^2 = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}, \qquad \boldsymbol{A} + \boldsymbol{I} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, \qquad \boldsymbol{A}^{-1} = \begin{bmatrix} -1/2 & 1 \\ 1/2 & 0 \end{bmatrix}.$$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Diagonalize A, by writing $A = S\Lambda S^{-1}$, where Λ is a diagonal matrix of eigenvalues and S is the matrix of corresponding eigenvectors. (No need to actually compute S^{-1} by taking the inverse; just put a -1 exponent on S.)
- (c) Repeat the previous parts for the matrices A^2 , A + I, and A^{-1} .
- 2. Find the eigenvalues of the following matrices:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{B} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \qquad \boldsymbol{A}\boldsymbol{B} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}, \qquad \boldsymbol{B}\boldsymbol{A} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}.$$

- (a) Are the eigenvalues of AB equal to the product of the eigenvalues of A and B?
- (b) Do AB and BA have the same eigenvalues?
- 3. Suppose λ is an eigenvalue of A. Prove the following:
 - (a) λ^2 is an eigenvalue of A^2 .
 - (b) If **A** is invertible, then λ^{-1} is an eigenvalue of \mathbf{A}^{-1} .
 - (c) $\lambda + c$ is an eigenvalue of $\mathbf{A} + c\mathbf{I}$, where c is a constant.
 - (d) \boldsymbol{A} and \boldsymbol{A}^T have the same eigenvalues.
- 4. The characteristic polynomial of \mathbf{A} is $\chi_{\mathbf{A}}(\lambda) = \det(\mathbf{A} \lambda \mathbf{I})$. Suppose this factors (always possible) as

$$\chi_{\mathbf{A}}(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

- (a) Plug in $\lambda = 0$ and find a formula for det **A** in terms of the eigenvalues of **A**.
- (b) The *trace* of A, denoted tr A, is the sum of the diagonal entries which is also (amazingly!) equal to the sum of the eigenvalues. If A is 2×2 , then

$$\boldsymbol{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{has} \quad \det(\boldsymbol{A} - \lambda \boldsymbol{I}) = \lambda^2 - (a+d)\lambda + (ad-bc) = 0$$

Write a formula for the chacteristic polynomial of a 2×2 matrix in terms of det A and tr A.

(c) Suppose \mathbf{A} is an $n \times n$ matrix with characteristic polynomial $\chi_{\mathbf{A}} = \lambda^n + c_{n-1}\lambda^{n-1} + \cdots + c_1\lambda + c_0$. Describe det \mathbf{A} and tr \mathbf{A} in terms of the c_i 's.

- (d) Explain why AB BA = I is impossible for $n \times n$ matrices.
- 5. Find the eigenvalues and eigenvectors of A, B, and C. Compute the traces and determinants of these matrices as well.

$$\boldsymbol{A} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \boldsymbol{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \boldsymbol{C} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

6. Recall that the following matrix rotates the xy-plane by the angle θ :

$$oldsymbol{Q} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

- (a) Solve $\det(\mathbf{Q} \lambda \mathbf{I}) = 0$ by the quadratic formula to find the eigenvalues of \mathbf{Q} .
- (b) Find the eigenvectors of \boldsymbol{Q} by solving $(\boldsymbol{Q} \lambda \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0}$. Use $i^2 = -1$.
- 7. Suppose A has eigenvalues 0, 3, 5 with linearly independent eigenvectors u, v, w.
 - (a) Give a basis for the nullspace and a basis for the column space.
 - (b) Find a particular solution to Ax = v + w. Find all solutions.
 - (c) Explain why Ax = u has no solution.
- 8. If \boldsymbol{A} has $\lambda_1 = 2$ with eigenvector $\boldsymbol{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\lambda_2 = 5$ with $\boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, use $\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$ to find \boldsymbol{A} . Note that no other matrix has the same λ 's and \boldsymbol{x} 's!
- 9. Consider the following matrices

$$\boldsymbol{A}_1 = \begin{bmatrix} .6 & .9 \\ .4 & .1 \end{bmatrix}, \qquad \boldsymbol{A}_2 = \begin{bmatrix} .6 & .2 \\ .4 & .8 \end{bmatrix}, \qquad \boldsymbol{A}_3 = \begin{bmatrix} .6 & .9 \\ .1 & .6 \end{bmatrix}.$$

- (a) Diagonalize each matrix by writing $A = S\Lambda S^{-1}$.
- (b) For each of these three matrices, compute the limit $A^k = S\Lambda^k S^{-1}$ as $k \to \infty$ if it exists.
- (c) Suppose \mathbf{A} is an $n \times n$ matrix that is diagonalizable (so it has n linearly independent eigenvectors). What must be true for the limit \mathbf{A}^k to exist as $k \to \infty$? What is needed for $\mathbf{A}^k \to \mathbf{0}$? Justify your answer.
- (d) Compute $(\mathbf{A}_3)^{10} \mathbf{u}_0$ for the following \mathbf{u}_0 :

$$\boldsymbol{u}_0 = \begin{bmatrix} 3\\1 \end{bmatrix}, \qquad \boldsymbol{u}_0 = \begin{bmatrix} 3\\-1 \end{bmatrix}, \qquad \boldsymbol{u}_0 = \begin{bmatrix} 6\\0 \end{bmatrix}$$