Read: Strang, Section 6.4, 8.3, 8.5, 10.1, 10.2.

Suggested short conceptual exercises: Strang, Section 6.4, #2, 7–10, 13–15, 18, 20–22, 25, 26. Section 8.3, #1, 4, 6, 8–11, 17. Section 8.5, #5, 10.

1. Consider the following three Markov matrices.

$$\boldsymbol{A} = \begin{bmatrix} 1 & .2 \\ 0 & .8 \end{bmatrix} \qquad \boldsymbol{A} = \begin{bmatrix} .2 & 1 \\ .8 & 0 \end{bmatrix} \qquad \boldsymbol{A} = \begin{bmatrix} .5 & .25 & .25 \\ .25 & .5 & .25 \\ .25 & .25 & .5 \end{bmatrix}$$

Carry out the following steps for each matrix.

- (a) Draw a weighted directed graph on $n \ (=2 \text{ or } 3)$ vertices showing the transition probabilities between states.
- (b) Find the eigenvalues and steady-state eigenvector.
- (c) Diagonalize \boldsymbol{A} by writing $\boldsymbol{A} = \boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$ and compute $\lim_{k \to \infty} \boldsymbol{A}^k$.
- 2. Every year, 10% of young people become old, 0.1% of young people become dead, and 5% of old people become dead. Assume there are no births and no zombies.
 - (a) Find the Markov matrix \boldsymbol{A} that models this process:

$$\begin{bmatrix} \text{young} \\ \text{old} \\ \text{dead} \end{bmatrix}_{k+1} = \begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \end{bmatrix} \begin{bmatrix} \text{young} \\ \text{old} \\ \text{dead} \end{bmatrix}_{k}.$$

- (b) Find the steady-state eigenvector by inspection alone.
- (c) Find the eigenvalues and eigenvectors of A. (Use a computer.)
- (d) Suppose there are 1000 young people initially. Compute the number of young, old, and dead people after 10 years. (Again, use a computer, but also use $\mathbf{A}^k = \mathbf{S} \mathbf{\Lambda}^k \mathbf{S}^{-1}$.)
- 3. Consider the set of all complex-valued 2π -periodic functions, which means that $f(z+2\pi) = f(z)$ for all z. This is a vector space and the infinite set $\{e^{inx} : n \in \mathbb{Z}\}$ is a basis. Define an *inner product* (i.e., dot product) on this space by

$$\langle f,g\rangle = \int_0^{2\pi} f(x)\overline{g(x)} \, dx.$$

- (a) Compute $\langle e^{inx}, e^{imx} \rangle$ and verify that this basis is indeed orthogonal. Recall that $\overline{e^{ix}} = e^{-ix}$, and be sure to consider the cases when n = m and $n \neq m$ separately.
- (b) Since $\{e^{inx} : n \in \mathbb{Z}\}$ is a basis, we can write any 2π -periodic function f(x) as

$$f(x) = \dots + c_{-2}e^{-2ix} + c_{-1}e^{-ix} + c_0 + c_1e^{ix} + c_2e^{2ix} + \dots = \sum_{n=-\infty}^{\infty} c_n e^{inx}.$$

Derive a formula for c_n . [*Hint*: Right-multiply both sides of the above equation by $\overline{e^{inx}}$ and integrate.]

- (c) Give an *orthonormal basis* for this vector space.
- (d) Define the function $f(x) = e^x$ on the interval $[0, 2\pi]$, and extend f to be periodic. Sketch the graph of this function and compute its complex Fourier series. That is, compute the coefficients c_n . You'll need to compute c_n (for $n \neq 0$) and c_0 separately.
- 4. Let \mathbf{A} be an $n \times n$ Hermitian matrix (also called *self-adjoint*), which means that $\overline{\mathbf{A}}^T = \mathbf{A}$. Note that \mathbf{A} may have complex-valued entries.
 - (a) Which Hermitian matrices are also symmetric?
 - (b) Prove that all eigenvalues of \boldsymbol{A} are real.
 - (c) Prove that if $Av = \lambda v$ and $Aw = \mu w$ for $\lambda \neq \mu$, then v and w are orthogonal.

These two proofs can be done by modifying the arguments in class that proved these statements for real symmetric matrices.

- 5. An real-valued $n \times n$ matrix is *skew-symmetric* if $A^T = -A$.
 - (a) What must be true about the diagonal entries of a skew-symmetric matrix?
 - (b) Prove that every non-zero eigenvalue of a skew-symmetric matrix is purely imaginary. [*Hint*: Note that a complex eigenvalue $\lambda = a + bi$ is real if $\lambda = \overline{\lambda}$, whereas it is purely imaginary if $\lambda = -\overline{\lambda}$.]
 - (c) Prove that if *n* is odd and *A* is skew-symmetric, then *A* must be singular. [*Hint*: complex eigenvalues come in pairs, because $Av = \lambda v$ implies $\overline{Av} = A\overline{v} = \overline{\lambda}\overline{v}$.]
 - (d) Write $\mathbf{A} = \mathbf{M} + \mathbf{N}$, the sum of a symmetric and a skew-symmetric matrix:

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 4 & 3 & 0 \\ 7 & 6 & 5 \end{bmatrix} = M + N \qquad (M^T = M, \ N^T = -N).$$

Hint: For any square matrix, $M = \frac{1}{2}(A + A^T)$. What does this force N to be?

6. Diagonalize the following matrices into $Q\Lambda Q^T$, where Q is an *orthogonal* matrix.

$$\boldsymbol{A} = \begin{bmatrix} 7 & 6 \\ 6 & -2 \end{bmatrix} \qquad \qquad \boldsymbol{B} = \begin{bmatrix} 0 & -2 & 2 \\ -2 & -1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Find all orthogonal matrices that diagonalize A. How many will diagonalize B?

7. Which of these classes of matrices do **A** and **B** belong to: Invertible, orthogonal, projection, permutation, diagonalizable, Markov?

$$\boldsymbol{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad \qquad \boldsymbol{B} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Which of these factorizations are possible for A and B: LU, QR, $S\Lambda S^{-1}$, $Q\Lambda Q^T$?

8. What number b in $\mathbf{A} = \begin{bmatrix} 2 & b \\ 1 & 0 \end{bmatrix}$ makes $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$ possible? What number makes \mathbf{A}^{-1} impossible?