Read: Strang, Section 6.7, 7.1, 7.2, 7.3.

1. Consider the following matrices: \(A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}, \quad A^T A = \begin{bmatrix} 5 & 15 \\ 15 & 45 \end{bmatrix}, \quad A A^T = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix}. \)

 (a) Find the eigenvalues \(\sigma_1^2, \sigma_2^2 \) and unit eigenvectors \(v_1, v_2 \) of \(A^T A \).

 (b) For the \(\sigma_i \neq 0 \), compute \(u_i = A v_i / \sigma_i \) and verify that indeed \(|| u_i || = 1 \). Find the other \(u_i \) by computing the other unit eigenvector of \(A A^T \).

 (c) Write out the singular value decomposition (SVD), \(A = U \Sigma V^T \).

 (d) Write down orthonormal bases for the four fundamental subspaces of \(A \).

 (e) Describe all matrices that have the same four fundamental subspaces.

2. Which of these transformations satisfy \(T(v + w) = T(v) + T(w) \) and which satisfy \(T(cv) = cT(v) \)? Assume that the mapping is either \(\mathbb{R}^2 \to \mathbb{R}^2 \) or \(\mathbb{R}^3 \to \mathbb{R}^3 \); it should be clear from the context which is which when it actually matters.

 (a) \(T(v) = (v_2, v_1) \)

 (b) \(T(v) = (v_1, v_1) \)

 (c) \(T(v) = (0, v_1) \)

 (d) \(T(v) = (0, 1) \)

 (e) \(T(v) = v_1 - v_2 \)

 (f) \(T(v) = v_1 v_2 \)

 (g) \(T(v) = v / ||v|| \)

 (h) \(T(v) = v_1 + v_2 + v_3 \)

 (i) \(T(v) = (v_1, 2v_2, 3v_3) \)

 (j) \(T(v) = \max \{ v_i \} \)

 For those above that are indeed linear, write down the matrix \(A \) of this transformation with respect to the standard unit basis vectors.

3. Let \(V \) be the space of all polynomials of degree at most 3. Let \(T: V \to V \) be the derivative operator \(T = d/dx \) and \(S: V \to V \) the second derivative operator \(S = d^2/dx^2 \). Use \(1, x, x^2, x^3 \) as both the input basis \(v_0, v_1, v_2, v_3 \) and the output basis \(w_0, w_1, w_2, w_3 \).

 (a) Write \(T v_0, T v_1, T v_2, T v_3 \) in terms of the \(w \)'s and find the \(4 \times 4 \) matrix \(A \) for \(T \).

 (b) Write \(S v_0, S v_1, S v_2, S v_3 \) in terms of the \(w \)'s and find the \(4 \times 4 \) matrix \(B \) for \(T \).

 (c) Compute the matrices \(A^2, AB, BA, \) and \(B^2 \). Which linear transformation (differential operator) do each of these products represent?

4. Let \(T: V \to W \) be a linear transformation with \(\dim V = \dim W = 3 \).

 (a) Using input basis \(v_1, v_2, v_3 \) and output basis \(w_1, w_2, w_3 \), suppose \(T(v_1) = w_2 \) and \(T(v_2) = T(v_3) = w_1 + w_3 \). Find the matrix \(A \) for this transformation and multiply \(A \) by \((1, 1, 1) \). What is \(T(v_1 + v_2 + v_3) \)?

 (b) The kernel of \(T \), denoted \(\ker T \), is defined as the set of all (input) vectors \(v \) for which \(T(v) = 0 \). Find \(\ker T \) and the nullspace of \(A \). Find all solutions to \(T(v) = w_2 \).

 (c) Find a vector \((c_1, c_2, c_3)\) that is not in the column space of \(A \). Find a combination of the \(w \)'s that is not in the range of \(T \).
5. Give an explicit example of a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ with input basis v_1, v_2 and output basis w_1, w_2 such that the matrix for T is A but the matrix for T^2 is not A^2.

[Hint: This will never work unless the v’s are different from the w’s.]

6. (a) What matrix M transforms $(1, 0)$ into (r, t) and $(0, 1)$ into (s, u)?

(b) What matrix N transforms (a, c) into $(1, 0)$ and (b, d) into $(0, 1)$?

(c) What condition on a, b, c, d will make Part (b) impossible?

(d) What matrix (in terms of M and N) transforms (a, c) into (r, t) and (b, d) into (s, u)?

(e) What matrix transforms $(2, 5)$ into $(1, 1)$ and $(1, 3)$ into $(0, 2)$? Draw the “grid picture” of this transformation.

7. Let $T : V \to W$ be a linear transformation with dim $V = n$ and dim $W = m$. Let v_1, \ldots, v_n be any basis for V. Describe precisely how to pick a basis w_1, \ldots, w_m for W so that the $m \times n$ matrix of T in block form is

$$M = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix},$$

where I_k is the $k \times k$ identity matrix. The other three entries are blocks of zeros which are potentially empty (depending on the sizes k, n, and m). What does the number k represent?

8. Consider the linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ with matrix representation $M = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & -2 \\ -3 & 0 & 3 \end{bmatrix}$ with respect to the standard basis e_1, e_2, e_3.

(a) What is the matrix representation A of T with respect to the input basis $v_1 = (1, -1, 0), v_2 = (0, 1, -1), v_3 = (1, 0, 1)$? and standard output basis $w_1 = e_1, w_2 = e_2, w_3 = e_3$?

(b) What is the matrix representation B of T with respect to the standard input basis $v_1 = e_1, v_2 = e_2, v_3 = e_3$ and the output basis $w_1 = (1, -1, 0), w_2 = (0, 1, -1), w_3 = (1, 0, 1)$?

(c) What is the matrix representation C of T with respect to the basis $v_1 = w_1 = (1, -1, 0), v_2 = w_2 = (0, 1, -1), v_3 = w_3 = (1, 0, 1)$?

(d) For each of the three parts above, sketch a commutative diagram relating the matrices M with (not necessarily all of) I, A, B, and C and the matrix S whose columns are $(1, -1, 0), (0, 1, -1)$, and $(1, 0, 1)$.