Claim: \(A \) is a one-to-one map from \(C(A^T) \to C(A) \).

[i.e., if \(x \neq y \) in \(C(A^T) \), then \(Ax \neq Ay \) in \(C(A) \).]

Proof: Suppose \(Ax = Ay \)

\[\Rightarrow A(x-y) = 0 \]

\[\Rightarrow x-y \text{ in } N(A) \]

\(x-y \) also \(\in \) \(C(A^T) \) since \(x, y \) \(\in \) \(C(A^T) \)

\[\Rightarrow x-y = 0 \] since \(N(A) \perp C(A^T) \).

Case 1: \(A \) has a 2-sided inverse:

\(AA^{-1} = I = A^T A \)

Full rank \(r = n = m \)
Case 2: A has a left-inverse

Full column rank \(r = n < m \)

Nullspace \(N(A^T) = \{0\} \)

\(Ax = b \) has 0 or 1 solution.

\(A^T A \) is invertible.

\[
(A^T A)^{-1} A^T A = I_{nxn}
\]

\(A^{-1}_{\text{left}} A = I \)

Case 3: A has a right-inverse

Full row rank \(r = m < n \)

Left nullspace \(N(A^T) = \{0\} \)

\(Ax = b \) has ∞ solutions.

\(A A^T \) is invertible.

\[
A A^T (A A^T)^{-1} = I_{m \times m}
\]

\(A A^{-1}_{\text{right}} = I \)

Reverse order:

\(A A^{-1}_{\text{left}} = A [A^T (A A^T)^{-1}] A \)

projection onto \(C(A) \)!
Case 4 The "general case" (any A!)

Recall: $A : C(A^T) \rightarrow C(A)$ is invertible!

Goal: Find a matrix A^+ such that $A^+A = \begin{bmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{n \times n}$ $AA^+ = \begin{bmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{m \times m}$

So, A^+A is the identity map on $C(A^T)$
AA^+ is the identity map on $C(A)$

How to Find A^+ (the "pseudo-inverse" of A)

Write $A = U \Sigma V^T$
$\Sigma = \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r \end{bmatrix}$, $\Sigma^+ = \begin{bmatrix} \sigma_1^{-1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r^{-1} \end{bmatrix}$

$A^+ = V \Sigma^+ U^T$

$A A^+ = (U \Sigma V^T)(V \Sigma^+ U^T) = U \Sigma \Sigma^+ U^T = \Sigma \Sigma^+ = \begin{bmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{m \times m}$

$A^+ A = (V \Sigma^+ U^T)(U \Sigma V^T) = V \Sigma^+ \Sigma V^T = \Sigma^+ \Sigma = \begin{bmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{n \times n}$