- 1. Define a function on \mathbb{N} by setting d(x, y) = 0 if x = y, and $d(x, y) = 3^{-k}$ otherwise, where 3^k is the highest power of 3 dividing |x y|. Prove that (\mathbb{N}, d) is a metric space.
- 2. Fix x_0 in a metric space (X, d) and define $\rho: X \to \mathbb{R}$ by $\rho(x) = d(x, x_0)$. Show that ρ is continuous.
- 3. Let $X = \mathbb{R}$, and let d(x, y) = |x y| be the usual Euclidean metric, and let $d' \colon X \times X \to \mathbb{R}$ be the *discrete metric*, defined by

$$d'(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

- (a) Prove or disprove: the identity map $i: (\mathbb{R}, d) \to (\mathbb{R}, d')$ is continuous.
- (b) Prove or disprove: the identity map $i' : (\mathbb{R}, d') \to (\mathbb{R}, d)$ is continuous.

Use the (ϵ, δ) -definition of continuity. The "inverse image of open sets" characterization, which we have not seen yet, will almost trivialize this question.

- 4. Let (X, d), (Y, d'), and (Z, d'') be metric spaces. A function $f: X \to Y$ is uniformly continuous if for all $\epsilon > 0$, there is some $\delta > 0$ such that $d(x, y) < \delta$ implies $d'(f(x), f(y)) < \epsilon$. This is a stronger condition than ordinary continuity because δ does not depend on $x \in X$.
 - (a) Give an example of a function that is continuous but not uniformly continuous.
 - (b) Prove that if $f: X \to Y$ and $g: Y \to Z$ are uniformly continous, then $g \circ f: X \to Z$ is uniformly continuous.