Throughout, a metric space X is endowed with a distance function $d: X \times X \to \mathbb{R}$, even if not explicitly mentioned. Also, if the distance function for \mathbb{R}^k is not specified, it is assumed to be Euclidean.

- 1. Let a and b be distinct points in a metric space X. Prove that there are neighborhoods N_a and N_b of a and b respectively such that $N_a \cap N_b = \emptyset$. A topological space with this property is said to be *Hausdorff*; thus this exercise shows that metric spaces are Hausdorff.
- 2. Let (X, d) be a metric space. The distance between a point $x \in X$ and a nonempty set $A \subseteq X$ is defined by

$$d(x, A) = \inf \{ d(x, a) \mid a \in A \}.$$

- (a) Prove that $d(x, A) \leq d(x, y) + d(y, A)$.
- (b) Prove that the function $f: X \to \mathbb{R}$ defined by f(x) = d(x, A) is continuous.
- (c) Prove that d(x, A) = 0 if and only if every neighborhood of x contains some point in A.
- 3. Is every point of every open set $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2 . What are the answers to these questions in \mathbb{R}^2 under the discrete metric?
- 4. Let (X, d_1) and (Y, d_2) be metric spaces and $f: X \to Y$ be continuous. Define a distance function d on $X \times Y$ in the standard manner:

$$d((x,y),(x',y')) = \max\{d_1(x,x'),d_2(y,y')\}.$$

- (a) Prove that the graph $\Gamma_f := \{(x, f(x)) \mid x \in X\}$ is a closed subset of $(X \times Y, d)$.
- (b) Show by example that a function whose graph is closed need not be continuous.