- 1. Suppose (X, τ_X) and (Y, τ_Y) are topological spaces and $A \subseteq X$ and $B \subseteq Y$. Prove that:
 - (a) $\operatorname{Int}(A \times B) = \operatorname{Int}(A) \times \operatorname{Int}(B);$
 - (b) $\overline{A \times B} = \overline{A} \times \overline{B};$
 - (c) $\partial(A \times B) = [\partial A \times \overline{B}] \cup [\overline{A} \times \partial B].$
- 2. Let X_1, X_2 be sets and let $\pi_i: X_1 \times X_2 \to X_i$ denote the standard projection maps for i = 1, 2. The Cartesian product $X_1 \times X_2$ can be thought of as the "smallest" set that projects onto both X_1 and X_2 . This can be formalized by the following "universal property":

For any set Z along with maps $f_i: Z \to X_i$, there is a unique map $f: Z \to X_1 \times X_2$ satisfying $\pi_i \circ f = f_i$ for i = 1, 2. That is, the following diagram commutes:

Prove this.

- 3. Let $(X_1, \tau_1), \ldots, (X_n, \tau_n)$ be topological spaces and endow $X := \prod_{i=1}^n X_i$ with the product topology τ_X . Let $\pi_i \colon X \to X_i$ be the standard projection maps; recall these are continuous.
 - (a) Suppose $f: Z \to X$ is a function from a topological space (Z, τ_Z) . Show that f is continuous if and only if each $f_i := \pi_i \circ f$ is continuous:

(b) Prove the following "universal property" of the product topology: For any collection of continuous maps $f_i: Z \to X_i$, there exists a unique continuous map $f: Z \to X$ such that $f_i = \pi_i \circ f$ for all *i*. That is, the following diagram commutes:

