Throughout, a topological space X is endowed with a topology τ , even if not explicitly mentioned.

- 1. A topological space X is *disconnected* if it is the union of two disjoint nonempty open sets. Otherwise it is *connected*.
 - (a) Prove that X is disconnected if and only if there exists a continuous surjective map $f: X \to \{0, 1\}$, where $\{0, 1\}$ has the discrete topology.
 - (b) Suppose X has the property that every two point subset lies inside a connected subset of X. Prove that X is connected.
- 2. Two subsets $A, B \subseteq X$ are *separated* in X if $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. A subspace $Y \subseteq X$ is connected if Y is not the union of two separated sets. Prove that the following are equivalent:
 - (i) Y is separated.
 - (ii) Y is the union of two sets that are open in the subspace topology of Y.
 - (iii) Y is the union of two sets that are closed in the subspace topology of Y.
- 3. Prove that if $A \subseteq X$ is connected, and $A \subseteq B \subseteq \overline{A}$, then B is connected.
- 4. A topological space X is step connected if given any open cover \mathcal{U} of X and any pair of points $x, y \in X$, there is a finite sequence U_1, \ldots, U_n of sets belonging to \mathcal{U} so that $x \in U_1, y \in U_n$ and $U_i \cap U_{i+1} \neq \emptyset$ of $1 \leq j < n$. Prove that X is step connected if and only if it is connected.
- 5. A space X is path connected if every two points $x, y \in X$ can be connected via a path. That is, there is a continuous function $f: [a, b] \to X$ with f(a) = x, f(b) = y, and $f([a, b]) \subseteq X$. Prove or disprove the following.
 - (a) X and Y are path connected if and only if $X \times Y$ is path connected.
 - (b) If $A \subseteq X$ and A is path connected, then \overline{A} is path connected.
 - (c) If $f: X \to Y$ is continuous and X is path connected, then f(X) is path connected.
 - (d) If $\{A_{\alpha}\}$ is a collection of path connected subspaces of X that has a nonempty intersection, then $\cup A_{\alpha}$ is path connected.