Throughout, a topological space X is endowed with a topology τ , even if not explicitly mentioned.

- 1. A collection $\{A_{\alpha}\}$ of subsets of X satisfies the *finite intersection property* if $\bigcap_{i=1} A_{\alpha_i} \neq \emptyset$ for any finite subcollection.
 - (a) Prove Cantor's "finite intersection lemma": Suppose $\{K_{\alpha}\}$ is a collection of compact sets of a Hausdorff space X. If $\bigcap_{i=1}^{n} K_{\alpha_i} \neq \emptyset$ for any finite subcollection, then $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$.
 - (b) Prove that X is compact if and only if every collection of closed sets $\{F_{\alpha}\}$ satisfying the finite intersection property must also satify $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$.
- 2. On HW 2, you proved that if a function $f: X \to Y$ between metric spaces is continuous, then its graph

$$\Gamma_f := \{ (x, f(x)) \mid x \in X \}$$

is a closed subset of $X \times Y$. Now, suppose $f: X \to Y$ is a map between topological spaces, and Y is Hausdorff.

- (a) Show that if f is continuous, then the graph Γ_f is closed in $X \times Y$.
- (b) Show that the conclusion of Part (a) may fail of Y is not Hausdorff.
- (c) Show that if X and Y are both compact and Hausdorff, then the converse to Part (a) holds.
- 3. Let $f: X \to Y$ be a continuous mapping of a compact space X onto a Hausdorff space Y. Prove that f is a closed map, and hence a quotient map.
- 4. Suppose X is a Hausdorff space and $q: X \to Y$ is a quotient map. Further suppose that q is a closed map and that $q^{-1}(y)$ is compact for all $y \in Y$. Prove that Y is Hausdorff.