Throughout, a topological space X is endowed with a topology τ , even if not explicitly mentioned.

- 1. Show that if $f, f': X \to Y$ are homotopic maps (not necessarily paths) and $g, g': Y \to Z$ are homotopic, then $g \circ f$ and $g' \circ f'$ are homotopic.
- 2. Given spaces X and Y, let [X, Y] denote the set of homotopy classes of maps of X into Y. A space X is *contractible* if the identity map $i_X \colon X \to X$ is nullhomotopic.
 - (a) Show that I and \mathbb{R} are contractible.
 - (b) Show that a contractiable space is path connected.
 - (c) Show that if Y is contractible, then for any X, the set [X, Y] has a single element.
 - (d) Show that if X is contractible and Y is path connected, then [X, Y] has a single element.
- 3. Let $f: I \to X$ be a path with $f(0) = x_0$ and $f(1) = x_1$. Denote its path homotopy class by [f], and let $\bar{f}: I \to X$ be the reverse path: $\bar{f}(s) = f(1-s)$. Let $e_{x_1}: I \to X$ denote the constant path at x_1 .
 - (a) Show that $[f] * [e_{x_1}] = [f]$.
 - (b) Show that $[\bar{f}] * [f] = [e_{x_1}].$