Throughout, X is a path-connected topological space. Given a path $\alpha: I \to X$ with endpoints $\alpha(0) = x_0$ and $\alpha(1) = x_1$, define the map

$$\hat{\alpha} \colon \pi_1(X, x_0) \longrightarrow \pi_1(X, x_1), \qquad \hat{\alpha}([f]) = [\bar{\alpha}] * [f] * [\alpha].$$

If $h: (X, x_0) \longrightarrow (Y, y_0)$ is continuous, then the *induced homomorphism* relative to x_0 is

$$h_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0), \qquad h_*([f]) = [h \circ f].$$

- 1. Let $\alpha: I \to X$ be a path from x_0 to x_1 , and $\beta: I \to X$ a path from x_1 to x_2 . Show that if $\gamma = \alpha * \beta$, then $\hat{\gamma} = \hat{\beta} \circ \hat{\alpha}$.
- 2. Show that $\pi_1(X, x_0)$ is abelian if and only if for every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha} = \hat{\beta}$.
- 3. Recall that a *retraction* of X onto a subset A is a continuous map $r: X \to A$ such that $r \circ r = r$. Equivalently, this means that $ri = 1_A$, where $i: A \hookrightarrow X$ is the inclusion map and 1_A is the identity mapping on A.
 - (a) Let $a_0 \in A$. Prove that if $r: X \to A$ is a retraction, then $i_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$ is one-to-one and $r_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$ is onto.
 - (b) Prove that a retract of a contractible space is contractible.
- 4. Let A be a subspace of \mathbb{R}^n and $h: (A, a_0) \longrightarrow (Y, y_0)$ be continuous. Show that if h extends to a continuous map of \mathbb{R}^n into Y (that is, if there is some $f: \mathbb{R}^n \to Y$ such that $f \circ i = h$ for the inclusion map $i: A \to \mathbb{R}^n$), then h_* is the trivial homomorphism.
- 5. Show that the induced homomorphism of a continuous map is independent of base point, up to isomorphism. More precisely, let $h: X \to Y$ be continuous, with $h(x_0) = y_0$ and $h(x_1) = y_1$. Let α be a path in X from x_0 to x_1 , and let $\beta = h \circ \alpha$. Show that

$$\hat{\beta} \circ (h_{x_0})_* = (h_{x_1})_* \circ \hat{\alpha} \,.$$

In other words, the following diagram commutes:

$$\pi_1(X, x_0) \xrightarrow{(h_{x_0})_*} \pi_1(Y, y_0)$$

$$\begin{array}{c} \hat{\alpha} \\ \uparrow \\ \pi_1(X, x_1) \xrightarrow{(h_{x_1})_*} \pi_1(Y, y_1) \end{array}$$