- 1. Show that there is no retraction from:
  - (a) the solid torus  $S^1 \times D^2$  to its boundary torus  $S^1 \times S^1$ ;
  - (b) the annulus  $S^1 \times I$  to its boundary;
  - (c) the Möbius band to its boundary.
- 2. Recall that a space X is contractible if the identity map on X is nullhomotopic. Show that X is contractible if and only if X has the homotopy type of a one-point space.
- 3. Let S be a set. A free group on S is a group F together with a map  $i: S \to F$  such that for any other map  $j: S \to G$  to a group G, there is a unique homomorphism  $f: F \to G$  such that  $j = f \circ i$ :



- (i) Show that *i* must be injective.
- (ii) Show that if F and F' are free groups on S, then  $F \cong F'$ .