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Boolean functions

Let F2 = {0, 1}. By a Boolean function, we usually mean a function f : Fn
2 −→ F2.

There are several standard ways to write Boolean functions:

1. As a logical expression, using ∧, ∨, and ¬ (or X )

2. As a polynomial, using +, and ·.
3. As a truth table.

Example

The following are three different ways to express the function that outputs 0 if
x = y = z = 1, and 1 otherwise.

f (x , y , z) = x ∧ y ∧ z

f (x , y , z) = 1 + xyz

x 1 1 1 1 0 0 0 0
y 1 1 0 0 1 1 0 0
z 1 0 1 0 1 0 1 0

f (x, y , z) 0 1 1 1 1 1 1 1

By counting the number of truth tables, there are 2(2n) n-variable Boolean functions.
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Boolean algebra

Boolean operation logical form polynomial form
AND z = x ∧ y z = xy
OR z = x ∨ y z = x + y + xy
NOT z = x z = 1 + x
XOR z = x ⊕ y = (x ∧ y) ∨ (x ∧ y) z = x + y

We rarely use XOR. Other Boolean operaions such as NAND, NOR, and XNOR exist but are
seldom used.

Over F2, we have identities such as x2 = x , and x(1 + x) = 0.

Theorem

Every Boolean function f : Fn
2 −→ F2 is a polynomial in the quotient ring F2[x1, . . . , xn]/I ,

where I = 〈x2
1 − x1, . . . , x2

n − xn〉.

Proposition

There are 2(2n) Boolean functions on n variables.

Proof 1: Count the number of truth tables. �

Proof 2: Since x2
i = xi , there are 2n monomials in x1, . . . , xn. Every Boolean function is

uniquely determined by a subset of these. �
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Boolean networks
A Boolean network (BN) on n nodes is an n-tuple f = (f1, . . . , fn) of Boolean functions,
where fi : Fn

2 → F2. This defines a map

f : Fn
2 −→ Fn

2, x = (x1, . . . , xn) 7−→
(
f1(x), . . . , fn(x)).

Any function from a finite set to itself can be described by a directed graph with every node
having out-degree 1. For a BN, this graph is called the phase space, or state space.

Definition

The phase space of a BN is the digraph with vertex set Fn
2 and edges {(x , f (x)) | x ∈ Fn

2}.

Proposition

Every function f : Fn
2 → Fn

2 can be expressed uniquely as a Boolean network: f = (f1, . . . , fn).

Proof

Clearly, every BN is a function Fn
2 → Fn

2. To prove the converse, it suffices to show that
these sets have the same cardinality.

To count the number of functions Fn
2 → Fn

2, we count phase spaces. Each of the 2n nodes

has 1 out-going edge, and 2n destinations. Thus, there are (2n)2n
= 2n2n

phase spaces.

To count BNs: there are 2(2n) choices for each fi , and so (2(2n))n = 2n2n
possible BNs. �
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Polynomial dynamical systems

Corollary

Every function f = Fn
2 −→ Fn

2 can be written as an n-tuple of square-free polynomials over
F2. That is,

f = (f1, . . . , fn), fi ∈ F2[x1, . . . , xn]/〈x2
1 − x1, . . . , x2

n − xn〉.

Everything we’ve done carries over to a generic finite field.

Definition

A polynomial dynamical system (PDS) over a finite field K is a function

f = (f1, . . . , fn) : K n −→ K n,

where the coordinate functions are fi ∈ K [x1, . . . , xn].

Iteration of f results in a time-discrete dynamical system.

Remark

If char K = p, then there is a bijection between coordinate functions over K and elements of
the quotient ring K [x1, . . . , xn]/〈xp

1 − x1, . . . , xp
n − xn〉.
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Asynchronous Boolean networks

Consider an n-tuple of Boolean functions (f1, . . . , fn), where fi ∈ F2[x1, . . . , xn].

The Boolean network that they determine can be thought of as the results of composing the
functions synchronously.

We can also compose them asynchronously. For each coordinate function fi , define the local
function

Fi : Fn
2 −→ Fn

2, x = (x1, . . . , xi , . . . , xn) 7−→ (x1, . . . , fi (x), . . . , xn).

Definition

The asynchronous phase space of (f1, . . . , fn) is the digraph with vertex set Fn
2 and edges

{(x ,Fi (x)) | i = 1, . . . , n, x ∈ Fn
2}.

Remarks

Clearly, this graph has n · 2n edges, though self-loops are often omitted.

Every non-loop edge connect two vertices that differ in exactly one bit. That is, all
non-loops are of the form (x , x + ei ), where ei is the ith standard unit basis vector.

It is elementary to extend this concept from BNs to general PDSs over finite fields.
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Asynchronous Boolean networks

Recall that every function Fn
2 −→ Fn

2 (i.e., phase space) can be realized as a BN.

Similarly, every digraph with vertex set Fn
2 that could be the asynchronous phase space of a

Boolean network, is one.

Theorem

Let G = (Fn
2,E) be a digraph with the following property:

For every x ∈ Fn
2 and i = 1, . . . , n: E contains either the self-loop (x , x) or the edge

(x , x + ei ) but not both.

Then G is the asynchronous phase space of some Boolean network (f1, . . . , fn).

Proof

As before, it suffices to show there there are 2n2n
distinct graphs G with this property.

Each of the 2n nodes has n out-going edges (including loops). Each of these edges has 2
possible destinations: x or x + ei .

This gives 2n choices at each node, for all 2n nodes, for (2n)2n
= 2n2n

graphs in total. �

M. Macauley (Clemson) Boolean networks and PDSs Math 4500, Fall 2016 7 / 9

mailto:macaule@clemson.edu


Phase spaces: synchronous vs. asynchronous

The synchronous phase space of a BN f = (f1, . . . , fn) has two types of nodes x ∈ Fn
2:

transient points: f k (x) 6= x for all k ≥ 1.

periodic points: f k (x) = x for some k ≥ 1. (k = 1: fixed point)

Thus, the phase space consists of periodic cycles and directed paths leading into these cycles.

The asynchronous phase space of f = (f1, . . . , fn) can be more complicated.

For x ,∈ y ∈ Fn
2, define x ∼ y iff there is a directed path from x to y and from y to x .

The resulting equivalence classes are the strongly connected components (SCC) of the phase
space. An SCC is terminal if it has no out-going edges from it.

A point x ∈ Fn
2:

is transient if it is not in a terminal SCC.

lies on a cyclic attractor if its terminal SCC is a k-cycle (k = 1: fixed point).

lies on a complex attractor otherwise.

Proposition

The fixed points of a BN are the same under synchronous and asynchronous update. �
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Phase spaces: synchronous vs. asynchronous

Consider the following Boolean network:

00

01

10

11

00

01

10

11

f2(x1, x2) = x2

f1(x1, x2) = x1
1 2

The asynchronous phase space is on the far right, and to the left of that is the synchronous
phase space.

M. Macauley (Clemson) Boolean networks and PDSs Math 4500, Fall 2016 9 / 9

mailto:macaule@clemson.edu

