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Gene expression 
�  Gene expression is a process that takes gene info and creates a functional 

gene product (e.g., a protein). 

�  Some genes code for proteins. Others (e.g., rRNA, tRNA) code for functional 
RNA. 

�  Gene Expression is a 2-step process: 
1)  transcription of  genes (messenger RNA synthesis) 

2)  translation of  genes (protein synthesis) 

�  DNA consists of  bases A, C, G, T. 

�  RNA consists of  bases A, C, G, U. 

�  Proteins are long chains of  amino acids. 

�  Gene expression is used by all known life forms.  
 



Transcription 

•  Transcription occurs inside the cell nucleus. 
•  A helicase enzyme binds to and “unzips” DNA to read it.  
•  DNA is copied into mRNA. 
•  Segments of  RNA not needed for protein coding are removed. 
•  The RNA then leaves the cell nucleus.  
 



Translation 

•  During translation, the mRNA is read by ribosomes.  
•  Each triple of  RNA bases codes for an amino acid. 
•  The result is a protein: a long chain of  amino acids. 
•  Proteins fold into a 3-D shape which determine their function 



Gene expression 
�  The expression level is the rate at which a gene is being expressed.  

�  Housekeeping genes are continuously expressed, as they are 
essential for basic life processes. 

�  Regulated genes are expressed only under certain outside factors 
(environmental, physiological, etc.). Expression is controlled by the 
cell.  

�  It is easiest to control gene regulation by affecting transcription.  

�  Certain repressor proteins bind to sites on DNA or RNA.  

�  Goal: Understand the complex cell behaviors of  gene regulation, 
which is the process of  turning on/off  certain genes depending on 
the requirements of  the organism.  



The lac operon in E. coli 
�  An operon is a region of  DNA that contains a cluster of  genes that are 

transcribed together. 

�  E. coli is a bacterium in the gut of  mammals and birds. Its genome has been 
sequenced and its physiology is well-understood. 

�  The lactose (lac) operon controls the transport and metabolism of  lactose in 
Escherichia coli. 

�  The lac operon was discovered by Francois Jacob and Jacques Monod in 
1961, which earned them the Nobel Prize. 

�  The lac operon was the first operon discovered and is the most widely studied 
mechanism of  gene regulation. 

�  The lac operon is used as a “test system” for models of  gene regulation.  

�  DNA replication and gene expression were all studied in E. coli before they 
were studied in eukaryotic cells.  



Lactose and β−galactosidase 
�  When a host consumes milk, E. coli is exposed to lactose (milk sugar). 

�  If  both glucose and lactose are available, then glucose is the preferred energy 
source. 

�  Lactose consists of  one glucose sugar linked to one galactose sugar.  

�  Before lactose can used as energy, the β−galactosidase enzyme is needed to 
break it down.  

�  β−galactosidase is encoded by the LacZ gene on the lac operon. 

�  β−galactosidase also catalyzes lactose into allolactose.  



Transporter protein 
�  To bring lactose into the cell, a transport protein, called lac permease, is 

required. 

�  This protein is encoded by the LacY gene on the lac operon. 

�  If  lactose is not present, then neither of  the following are produced: 
1)  β−galactosidase (LacZ gene) 

2)   lac permease (LacY gene) 

�  In this case, the lac operon is OFF. 



The lac operon 



lac operon, with lactose present 

�  Lactose is brought into the cell by the lac permease transporter protein 

�  β−galactosidase breaks up lactose into glucose and galactose.. 

�  β−galactosidase also converts lactose into allolactose. 

�  Allolactose binds to the lac repressor protein, preventing it from binding to 
the operator region of  the genome. 

�  Transcription continues: mRNA encoding the lac genes is produced. 

�  Lac proteins are produced, and more lactose is brought into the cell. (The 
operon is ON.) 

�  Eventually, all lactose is used up, so there will be no more allolactose. 

�  The lac repressor can now bind to the operator, so mRNA transcription stops. 
(The operon has turned itself  OFF.)  



An ODE lac operon model 
�  M:  mRNA 

�  B:  β−galactosidase  

�  A:  allolactose 

�  P:  transporter protein 

�  L:  lactose 



Downsides of  an ODE model 
�  Very mathematically advanced. 

�  Too hard to solve explicitly. Numerical methods are needed.  

�  MANY experimentally determined “rate constants” (I count 18…) 

�  Often, these rate constants aren’t known even up to orders of  magnitude.  

 



A Boolean approach 
�  What if  we instead assumed everything is “Boolean” (0 or 1): 

o  Gene products are either present or absent 

o  Enzyme concentrations are either high or low. 

o  The operon is either on or off.  

�  mRNA is transcribed (M=1) if  there is no external glucose (G=0), and either 
internal lactose (L=1) or external lactose (Le=1) are present. 

 

�  The LacY and LacZ gene products (E=1) will be produced if  mRNA is 
available (M=1).  
 

�  Lactose will be present in the cell if  there is no external glucose (Ge=0), 
and either of  the following holds: 

ü  External lactose is present (Le=1) and lac permease (E=1) is available. 

ü  Internal lactose is present (L=1), but β−galactosidase is absent (E=0). 

 

 

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )

xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
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Comments on the Boolean model 
�  We have two “types” of  Boolean quantities: 

o  mRNA (M), lac gene products (E), and internal lactose (L) are variables. 

o  External glucose (Ge) and lactose (Le) are parameters (constants).  

�  Variables and parameters are drawn as nodes. 

�  Interactions can be drawn as signed edges. 

�  A signed graph called the wiring diagram describes the 
dependencies of  the variables. 

�  Time is discrete: t=0, 1, 2, …. 

�  Assume that the variables are updated synchronously.  
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How to analyze a Boolean model 
�  At the bare minimum, we should expect: 

o  Lactose absent => operon OFF. 

o  Lactose present, glucose absent => operon ON. 

o  Lactose and glucose present => operon OFF.  

�  The state space (or phase space) is the directed graph (V, T), where   

�  We’ll draw the state space for all four choices of  the parameters: 

o  (Le, Ge) = (0, 0).  We hope to end up in a fixed point (0,0,0). 

o  (Le, Ge) = (0, 1).  We hope to end up in a fixed point (0,0,0). 

o  (Le, Ge) = (1, 0).  We hope to end up in a fixed point (1,1,1). 

o  (Le, Ge) = (1, 1).  We hope to end up in a fixed point (0,0,0). 

�  Assume that the variables are updated synchronously.  
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T = (x, f (x)) : x ∈V{ }V = (xM , xE, xL ) : xi ∈ {0,1}{ }



How to analyze a Boolean model 
�  We can plot the state space using the software: Analysis of  Dynamical 

Algebraic Models (ADAM), at adam.plantsimlab.org. 

�  First, we need to convert our logical functions into polynomials.  

�  Here is the relationship between Boolean logic and polynomial algebra: 

          Boolean operations            logical form               polynomial form 

o  AND 

o  OR 

o  NOT 

•  Also, everything is done modulo 2, so 1+1=0, and x2=x, and thus x(x+1)=0. 

�  Assume that the variables are updated synchronously.  
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z = x∧ y
z = x∨ y
z = x

z = xy
z = x + y+ xy
z =1+ x
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State space when (Ge, Le) = (0, 1). The operon is ON. 
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State space when (Ge, Le) = (0, 0).  
 
The operon is OFF. 
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State space when (Ge, Le) = (1, 0). The operon is OFF. 
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State space when (Ge, Le) = (1, 1). The operon is OFF. 



Take-aways 
�  Gene regulatory networks consist of  a collection of  gene products that 

interact each other to control a specific cell function. 

�  Classically, these have been modeled quantitatively with differential equations 
(continuous models). 

�  Boolean networks take a different approach. They are discrete models that 
are inherently qualitative. 

�  The state space graph encodes all of  the dynamics. The most important 
features are the fixed points, and a necessary step in model validation is to 
check that they are biologically meaningful.  

�  The model of  the lac operon shown here was a “toy model”. We will study 
more complicated models of  the lac operon shortly that captures more of  the 
intricate biological features of  these systems. 

�  Modeling with Boolean logic is a relatively new concept, first done in the 
1970s. It is a popular research topic in the field of  systems biology.  

 

 

 


