Difference Equations

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4500, Mathematical Modeling

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$,
- death rate is $d \in [0, 1]$.

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$,
- death rate is $d \in [0, 1]$.

This can be modeled by a simple equation:

$$\Delta P = fP - dP$$

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$,
- death rate is $d \in [0, 1]$.

This can be modeled by a simple equation:

$$\Delta P = fP - dP = (f - d)P.$$

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$,
- death rate is $d \in [0, 1]$.

This can be modeled by a simple equation:

$$\Delta P = fP - dP = (f - d)P.$$

Suppose time is discretized, e.g., it only takes integer values: $t=0,1,2,\ldots$

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$,
- death rate is $d \in [0, 1]$.

This can be modeled by a simple equation:

$$\Delta P = fP - dP = (f - d)P.$$

Suppose time is discretized, e.g., it only takes integer values: $t=0,1,2,\ldots$

Let $P_t = P(t) = \text{population at time } t$.

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$,
- death rate is $d \in [0, 1]$.

This can be modeled by a simple equation:

$$\Delta P = fP - dP = (f - d)P.$$

Suppose time is discretized, e.g., it only takes integer values: $t = 0, 1, 2, \ldots$

Let $P_t = P(t) = \text{population at time } t$.

Then $\Delta P = P_{t+1} - P_t$,

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$,
- death rate is $d \in [0, 1]$.

This can be modeled by a simple equation:

$$\Delta P = fP - dP = (f - d)P.$$

Suppose time is discretized, e.g., it only takes integer values: $t = 0, 1, 2, \ldots$

Let $P_t = P(t) = \text{population at time } t$.

Then $\Delta P = P_{t+1} - P_t$, from which it follows that

$$P_{t+1} = P_t + \Delta P$$

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$,
- death rate is $d \in [0, 1]$.

This can be modeled by a simple equation:

$$\Delta P = fP - dP = (f - d)P.$$

Suppose time is discretized, e.g., it only takes integer values: $t = 0, 1, 2, \ldots$

Let $P_t = P(t) = \text{population at time } t$.

Then $\Delta P = P_{t+1} - P_t$, from which it follows that

$$P_{t+1} = P_t + \Delta P = P_t + (f - d)P_t$$

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$,
- death rate is $d \in [0, 1]$.

This can be modeled by a simple equation:

$$\Delta P = fP - dP = (f - d)P.$$

Suppose time is discretized, e.g., it only takes integer values: $t = 0, 1, 2, \ldots$

Let $P_t = P(t) = \text{population at time } t$.

Then $\Delta P = P_{t+1} - P_t$, from which it follows that

$$P_{t+1} = P_t + \Delta P = P_t + (f - d)P_t = (1 + f - d)P_t$$
.

Consider a population of insects that reproduces daily, of size P(t):

- birth rate is $f \in [0, \infty)$.
- death rate is $d \in [0, 1]$.

This can be modeled by a simple equation:

$$\Delta P = fP - dP = (f - d)P.$$

Suppose time is discretized, e.g., it only takes integer values: $t = 0, 1, 2, \dots$

Let $P_t = P(t) = \text{population at time } t$.

Then $\Delta P = P_{t+1} - P_t$, from which it follows that

$$P_{t+1} = P_t + \Delta P = P_t + (f - d)P_t = (1 + f - d)P_t$$
.

Letting $\lambda = 1 + f - d$ (the "finite growth rate"), we can write this as $|P_{t+1} = \lambda P_t|$.

2 / 12

Consider a population of insects that reproduces daily, with the following parameters:

- initial population $P_0 = 300$,
- birth rate f = .03,
- death rate d = .01.

Consider a population of insects that reproduces daily, with the following parameters:

- initial population $P_0 = 300$,
- birth rate f = .03.
- death rate d = .01.

Then the finite growth rate is $\lambda = 1 + f - d = 1.02$, and

$$P_1 = (1.02)P_0$$

$$P_2 = (1.02)P_1 = (1.02)^2 P_0$$

$$P_3 = (1.02)P_2 = (1.02)^3 P_0$$

$$\vdots$$

Consider a population of insects that reproduces daily, with the following parameters:

- initial population $P_0 = 300$,
- birth rate f = .03.
- death rate d = .01.

Then the finite growth rate is $\lambda = 1 + f - d = 1.02$, and

$$P_1 = (1.02)P_0$$

$$P_2 = (1.02)P_1 = (1.02)^2 P_0$$

$$P_3 = (1.02)P_2 = (1.02)^3 P_0$$

$$\vdots$$

It is not difficult to see the closed-form solution $P_t = \lambda^t P_0$. This is called *exponential growth*.

Definition

Let Q be a quantity defined for all $t \in \mathbb{N}$, such that $Q_{t+1} = F(Q_t)$, for some function F.

Definition

Let Q be a quantity defined for all $t \in \mathbb{N}$, such that $Q_{t+1} = F(Q_t)$, for some function F.

In the previous example: $F(x) = \lambda x$. This is called the *Malthusian model*. It is a *linear* difference equation because F(x) is linear.

Definition

Let Q be a quantity defined for all $t \in \mathbb{N}$, such that $Q_{t+1} = F(Q_t)$, for some function F.

In the previous example: $F(x) = \lambda x$. This is called the *Malthusian model*. It is a *linear* difference equation because F(x) is linear.

Let's compare difference equations to differential equations:

■ Difference equations are discrete time, continuous space.

Definition

Let Q be a quantity defined for all $t \in \mathbb{N}$, such that $Q_{t+1} = F(Q_t)$, for some function F.

In the previous example: $F(x) = \lambda x$. This is called the *Malthusian model*. It is a *linear* difference equation because F(x) is linear.

Let's compare difference equations to differential equations:

- Difference equations are discrete time, continuous space.
- Differential equations are continuous time, continuous space.

Definition

Let Q be a quantity defined for all $t \in \mathbb{N}$, such that $Q_{t+1} = F(Q_t)$, for some function F.

In the previous example: $F(x) = \lambda x$. This is called the *Malthusian model*. It is a *linear* difference equation because F(x) is linear.

Let's compare difference equations to differential equations:

- Difference equations are discrete time, continuous space.
- Differential equations are continuous time, continuous space.

Exercise

Can you think of a model that is discrete time and discrete space? Or continuous time and discrete space?

Broad goals

Broad goals

■ Find an appropriate model.

Broad goals

- Find an appropriate model.
- Analyze models that naturally arise.

Broad goals

- Find an appropriate model.
- Analyze models that naturally arise.

For example, consider the following three problems to be modeled:

1. Let P be a population of $P_0 = 300$ insects with birth rate f = .03 and death rate d = .01.

Broad goals

- Find an appropriate model.
- Analyze models that naturally arise.

For example, consider the following three problems to be modeled:

- 1. Let P be a population of $P_0 = 300$ insects with birth rate f = .03 and death rate d = .01.
- 2. Let P be the value of an initial investment of $P_0=300$ dollars with fixed 2% interest rate, i.e., $\lambda=1.02$.

Broad goals

- Find an appropriate model.
- Analyze models that naturally arise.

For example, consider the following three problems to be modeled:

- 1. Let P be a population of $P_0 = 300$ insects with birth rate f = .03 and death rate d = .01.
- 2. Let P be the value of an initial investment of $P_0=300$ dollars with fixed 2% interest rate, i.e., $\lambda=1.02$.
- 3. Let P be a mass of a population of bacteria that is initially $P_0=300$ grams, with growth rate insects with finite growth rate $\lambda=1.02$.

5 / 12

Broad goals

- Find an appropriate model.
- Analyze models that naturally arise.

For example, consider the following three problems to be modeled:

- 1. Let P be a population of $P_0 = 300$ insects with birth rate f = .03 and death rate d = .01.
- 2. Let P be the value of an initial investment of $P_0=300$ dollars with fixed 2% interest rate, i.e., $\lambda=1.02$.
- 3. Let P be a mass of a population of bacteria that is initially $P_0=300$ grams, with growth rate insects with finite growth rate $\lambda=1.02$.

Exercise

Which of these are more suited for difference equations, and which for differential equations?

5 / 12

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P$ = per capita growth rate.

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P$ = per capita growth rate.

■ *P* small:

6 / 12

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P$ = per capita growth rate.

■ P small: $\frac{\Delta P}{P}$ large.

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P$ = per capita growth rate.

- P small: $\frac{\Delta P}{P}$ large.
- *P* large:

6 / 12

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P = \text{per capita growth rate}$.

- P small: $\frac{\Delta P}{P}$ large.
- P large: $\frac{\Delta P}{P}$ small.

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P$ = per capita growth rate.

- P small: $\frac{\Delta P}{P}$ large.
- P large: $\frac{\Delta P}{P}$ small.
- P too large:

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P = \text{per capita growth rate}$.

- P small: $\frac{\Delta P}{P}$ large.
- P large: $\frac{\Delta P}{P}$ small.
- P too large: $\frac{\Delta P}{P} < 0$.

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P = \text{per capita growth rate}.$

- P small: $\frac{\Delta P}{P}$ large.
- P large: $\frac{\Delta P}{P}$ small.
- P too large: $\frac{\Delta P}{P} < 0$.

Assumptions:

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P$ = per capita growth rate.

- P small: $\frac{\Delta P}{P}$ large.
- P large: $\frac{\Delta P}{P}$ small.
- P too large: $\frac{\Delta P}{P} < 0$.

Assumptions:

■ Let r be the growth rate when P = 0. [Technically, $r = \lim_{P \to 0^+} \frac{\Delta P}{P}$.] This is called the *finite intrinsic growth rate*.

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

Big idea

Analyze $\Delta P/P$ = per capita growth rate.

- P small: $\frac{\Delta P}{P}$ large.
- P large: $\frac{\Delta P}{P}$ small.
- P too large: $\frac{\Delta P}{P} < 0$.

Assumptions:

- Let r be the growth rate when P = 0. [Technically, $r = \lim_{P \to 0^+} \frac{\Delta P}{P}$.] This is called the *finite intrinsic growth rate*.
- Let M be the population for which $\frac{\Delta P}{P}=0$. This is called the *carrying capacity*.

Realistically, a population's growth rate isn't constant – it depends on size. ("density dependent").

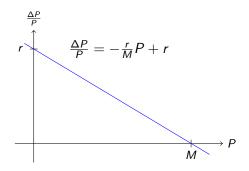
Big idea

Analyze $\Delta P/P$ = per capita growth rate.

- P small: $\frac{\Delta P}{P}$ large.
- P large: $\frac{\Delta P}{P}$ small.
- P too large: $\frac{\Delta P}{P} < 0$.

Assumptions:

- Let r be the growth rate when P=0. [Technically, $r=\lim_{P\to 0^+}\frac{\Delta P}{P}$.] This is called the *finite intrinsic growth rate*.
- Let M be the population for which $\frac{\Delta P}{P}=0$. This is called the *carrying capacity*.
- Suppose the growth rate decreases *linearly* with *P*.



Since the growth rate decreases *linearly* with P, basic algebra gives

$$\frac{\Delta P}{P} = -\frac{r}{M}P + r = r\left(1 - \frac{P}{M}\right).$$

Substituting $\Delta P = P_{t+1} - P_t$ into $\frac{\Delta P}{P} = r \left(1 - \frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$P_{t+1} = P_t \left(1 + r \left(1 - \frac{P_t}{M} \right) \right).$$

Substituting $\Delta P = P_{t+1} - P_t$ into $\frac{\Delta P}{P} = r \left(1 - \frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$P_{t+1} = P_t \left(1 + r \left(1 - \frac{P_t}{M} \right) \right).$$

Model validation

To see if this model is reasonable, the first thing to check are some simple cases:

M. Macauley (Clemson)

Substituting $\Delta P = P_{t+1} - P_t$ into $\frac{\Delta P}{P} = r \left(1 - \frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$P_{t+1} = P_t \left(1 + r \left(1 - \frac{P_t}{M} \right) \right).$$

Model validation

To see if this model is reasonable, the first thing to check are some simple cases:

■ *P* ≪ *M*

Substituting $\Delta P = P_{t+1} - P_t$ into $\frac{\Delta P}{P} = r \left(1 - \frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$P_{t+1} = P_t \left(1 + r \left(1 - \frac{P_t}{M} \right) \right).$$

Model validation

$$P \ll M \Longrightarrow 1 - \frac{P}{M} \approx 1$$

Substituting $\Delta P = P_{t+1} - P_t$ into $\frac{\Delta P}{P} = r \left(1 - \frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$P_{t+1} = P_t \left(1 + r \left(1 - \frac{P_t}{M} \right) \right).$$

Model validation

To see if this model is reasonable, the first thing to check are some simple cases:

 $P \ll M \Longrightarrow 1 - \frac{P}{M} \approx 1 \Longrightarrow P_{t+1} \approx (1+r)P_t$. [Exponential growth!]

M. Macauley (Clemson)

Substituting $\Delta P = P_{t+1} - P_t$ into $\frac{\Delta P}{P} = r \left(1 - \frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$P_{t+1} = P_t \left(1 + r \left(1 - \frac{P_t}{M} \right) \right).$$

Model validation

- $Arr P \ll M \Longrightarrow 1 rac{P}{M} pprox 1 \Longrightarrow P_{t+1} pprox (1+r)P_t$. [Exponential growth!]
- $P \approx M$

Substituting $\Delta P = P_{t+1} - P_t$ into $\frac{\Delta P}{P} = r \left(1 - \frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$P_{t+1} = P_t \left(1 + r \left(1 - \frac{P_t}{M} \right) \right).$$

Model validation

- $Arr P \ll M \Longrightarrow 1 rac{P}{M} pprox 1 \Longrightarrow P_{t+1} pprox (1+r)P_t$. [Exponential growth!]
- $P \approx M \Longrightarrow 1 \frac{P}{M} \approx 0$

Substituting $\Delta P = P_{t+1} - P_t$ into $\frac{\Delta P}{P} = r \left(1 - \frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$P_{t+1} = P_t \left(1 + r \left(1 - \frac{P_t}{M} \right) \right).$$

Model validation

- $P \ll M \Longrightarrow 1 \frac{P}{M} \approx 1 \Longrightarrow P_{t+1} \approx (1+r)P_t$. [Exponential growth!]
- $P \approx M \Longrightarrow 1 \frac{P}{M} \approx 0 \Longrightarrow P_{t+1} \approx P_t$.

Substituting $\Delta P = P_{t+1} - P_t$ into $\frac{\Delta P}{P} = r \left(1 - \frac{P}{M}\right)$, followed by easy algebra yields the discrete logistic model:

$$P_{t+1} = P_t \left(1 + r \left(1 - \frac{P_t}{M} \right) \right).$$

Model validation

To see if this model is reasonable, the first thing to check are some simple cases:

- $Arr P \ll M \Longrightarrow 1 rac{P}{M} pprox 1 \Longrightarrow P_{t+1} pprox (1+r)P_t$. [Exponential growth!]
- $ightharpoonup P pprox M \Longrightarrow 1 rac{P}{M} pprox 0 \Longrightarrow P_{t+1} pprox P_t.$

Exercise

What is F(x) in the discrete logistic model? [It must satisfy $P_{t+1} = F(P_t)$.]

M. Macauley (Clemson)

Solutions of difference equations

Difference equations, though simiple, often have no closed form solution for P_t .

Solutions of difference equations

Difference equations, though simiple, often have no closed form solution for P_t .

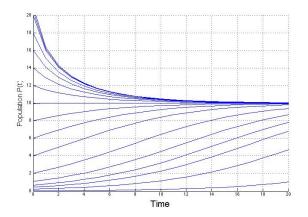
However, we can plot the solutions for various initial values P_0 .

Solutions of difference equations

Difference equations, though simiple, often have no closed form solution for P_t .

However, we can plot the solutions for various initial values P_0 .

Here are some solutions to the equation $P_{t+1} = P_t + .2P_t(1 - \frac{P_t}{10})$.



Consider the difference equation $\Delta P = 0.8P_t \left(1 - \frac{P_t}{10}\right)$. Or equivalently,

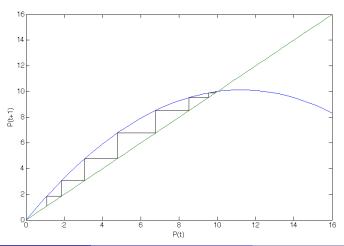
 $P_{t+1} = F(P_t) = P_t + 0.8P_t \left(1 - \frac{P_t}{10}\right).$

Consider the difference equation $\Delta P = 0.8P_t \left(1 - \frac{P_t}{10}\right)$. Or equivalently, $P_{t+1} = F(P_t) = P_t + 0.8P_t \left(1 - \frac{P_t}{10}\right)$.

We can numerically find $P_0, P_1, P_2,...$ by plotting $F(x) = x + 0.8x(1 - \frac{x}{10})$ and y = x on the same axes, and then by "cobwebbing":

Consider the difference equation $\Delta P = 0.8P_t \left(1 - \frac{P_t}{10}\right)$. Or equivalently, $P_{t+1} = F(P_t) = P_t + 0.8P_t \left(1 - \frac{P_t}{10}\right)$.

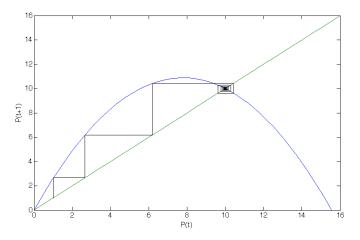
We can numerically find $P_0, P_1, P_2, ...$ by plotting $F(x) = x + 0.8x(1 - \frac{x}{10})$ and y = x on the same axes, and then by "cobwebbing":

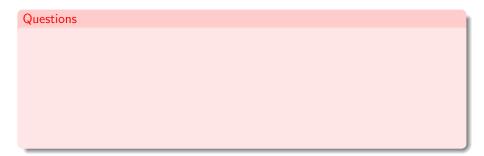


Consider another difference equation: $\Delta P = 1.8P_t \left(1 - \frac{P_t}{10}\right)$. Or equivalently, $P_{t+1} = F(P_t) = P_t + 1.8P_t \left(1 - \frac{P_t}{10}\right)$.

Math 4500, Modeling

Consider another difference equation: $\Delta P = 1.8 P_t \left(1 - \frac{P_t}{10}\right)$. Or equivalently, $P_{t+1} = F(P_t) = P_t + 1.8 P_t \left(1 - \frac{P_t}{10}\right)$.





Questions

1. Sketch a plot of several solution curves P(t) for the difference equations in the previous two examples.

Math 4500, Modeling

Questions

- 1. Sketch a plot of several solution curves P(t) for the difference equations in the previous two examples.
- 2. What does the spiraling behavior of this cobweb imply about the population P(t)?

Questions

- 1. Sketch a plot of several solution curves P(t) for the difference equations in the previous two examples.
- 2. What does the spiraling behavior of this cobweb imply about the population P(t)?
- 3. How does this relate to mass-spring systems? [Hint: Think about damping.]

Questions

- 1. Sketch a plot of several solution curves P(t) for the difference equations in the previous two examples.
- 2. What does the spiraling behavior of this cobweb imply about the population P(t)?
- 3. How does this relate to mass-spring systems? [Hint: Think about damping.]
- 4. What features about a population are highlighted in the logistic equation using difference equations that do not arise using differential equations?