Analyzing non-linear models

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/
Math 4500, Fall 2016

Long-term behavior

Consider a difference equation $P_{t+1}=F\left(P_{t}\right)$, and the sequence $P_{0}, P_{1}, P_{2}, P_{3}, \ldots$.
Transient behavior (the initial few iterations) will usually "die out."
In contrast, long-term behavior is often independent, or "almost independent" of the initial conditions.

Types of periodic cycles

- $P_{t+1}=P_{t}$ is a fixed point (or "equilibrium", or "steady-state").
- We can also have longer periodic cycles:

$$
\cdots, \underbrace{P_{t}, P_{t+1}, \ldots, P_{t+k-1}}_{\text {length-k cycle }}, \underbrace{P_{t+k}}_{=P_{t}}, \underbrace{P_{t+k+1}}_{=P_{t+1}}, \underbrace{P_{t+k+2}}_{=P_{t+2}}, \cdots
$$

Note that fixed poitns are cycles of length $k=1$.

Fixed points

Goals

- How to find them.

■ How to classify them (stable, unstable, etc.)

There are two ways (which are essentially the same) to find the fixed points:
(i) Set $\Delta P=0$ and solve for P.
(ii) Set $P_{t}=P_{t+1}=P^{*}$ and solve for P^{*}.

Example. Consider $P_{t+1}=P_{t}\left(1+.7\left(1-\frac{P_{t}}{10}\right)\right)$.
Set $P_{t}=P_{t+1}=P^{*}$ and solve

$$
P^{*}=P^{*}\left(1+.7\left(1-\frac{P^{*}}{10}\right)\right)
$$

Clearly, the fixed points are $P^{*}=0$ and $P^{*}=10$.
This should be visually obvious from either plots of $P(t)$, or from any cobwebbing plot.

Bifurcation in the logistic map $P_{t+1}=r P_{t}\left(1-P_{t}\right)$

Consider the following "normalized" logistic model:

$$
P_{t+1}=r P(1-P) .
$$

Main idea

Understand how the dynamics (e.g., the cobwebbing diagram) change qualitatively as the parameter r changes.

There are two fixed points:
■ $P^{*}=0: \quad p_{t+1} \approx(1+r) p_{t}$, unstable, since $1+r>1$.
■ $P^{*}=1-\frac{1}{r}: \quad p_{t+1} \approx \underbrace{(1-r)} p_{t}$, stability depends on r.
"stretching factor"
We'll analyze the nature of fixed point $P^{*}=1$ for various values of r.

Bifurcation in the logistic map $P_{t+1}=r P_{t}\left(1-P_{t}\right)$

Case I: $0<r<1$
Since $0<1-r<1$, the perturbation is $p_{t+1} \approx \underbrace{(1-r)}_{>0} p_{t}$.
Therefore, $p_{t} \rightarrow 0$ without changing sign. This is overdamping.
[GRAPHICS]

Bifurcation in the logistic map $P_{t+1}=r P_{t}\left(1-P_{t}\right)$

Case II: $1<r<2$
Since $0<1-r<1$, the perturbation is $p_{t+1} \approx \underbrace{(1-r)}_{<0} p_{t}$.
Therefore, $p_{t} \rightarrow 0$, but the sign toggles. This is underdamping.
[GRAPHICS]

Bifurcation in the logistic map $P_{t+1}=r P_{t}\left(1-P_{t}\right)$

Case III: $r>2$

Since $1-r<-1$, the perturbation is $p_{t+1} \approx \underbrace{(1-r)}_{\|\cdot\|>1} p_{t}$.
Since p_{t+1} grows, it cannot be concluded that $p_{t} \rightarrow 0$.

Bifurcation diagram of the logistic map $P_{t+1}=r P_{t}\left(1-P_{t}\right)$

The following diagram show the long-term values (i.e., equilibria, fixed points, or periodic orbits) as a function of bifurication parameter, r.

What do you notice?

