
Reverse engineering using computational algebra

Matthew Macauley

Department of Mathematical Sciences
Clemson University

http://www.math.clemson.edu/~macaule/

Math 4500, Fall 2016

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 1 / 29

mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu

What is reverse engineering?

Sometimes, complex biological systems can seem a bit like this: (click here!).

Systems biology is the study of systems of biological components.

A central problem in systems biology is to use experimental data to infer the structure of a
system such as a gene regulatory network.

Modeling approaches

Bottom-up: Build a network from the known local information about every single
object.

Top-down (“Reverse-engineering”): View the system as a black box, then use the
available data to make a model.

Previously, we’ve mostly studied the first approach to modeling. In this lecture, we’ll focus
on the second approach.

Many problems in statistics (e.g., linear regression) deal with the second approach.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 2 / 29

http://www.math.clemson.edu/~macaule/classes/s16_math4500/blue-ball-machine.gif
mailto:macaule@clemson.edu

The blind men and the elephant

An old parable from India tells of several blind men who try to determine what an elephant
looks like just by touch.

The blind men are trying to reverse engineer an elephant from just a few data points.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 3 / 29

mailto:macaule@clemson.edu

Inferring a Boolean network model (elephant) from data (observations)

Consider a Boolean network model on n nodes, with update function F : Fn
2 → Fn

2. There are
2n input states.

Suppose we don’t know the actual function F , but through experimental data, we are able to
observe several transitions:

s1 = (s11, s12, . . . , s1n) s2 = (s21, . . . , s2n) sm = (sm1, . . . , smn)

t1 = (t11, t12, . . . , t1n) t2 = (t21, . . . , t2n) tm = (tm1, . . . , tmn)· · ·

· · ·

Reverse engineering

Start with experimental data (observations) and reconstruct the model (elephant). The two
main features are:

(i) the network topology, or wiring diagram,

(ii) the Boolean functions at each node: F = (f1, . . . , fn).

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 4 / 29

mailto:macaule@clemson.edu

Inferring a Boolean network model (elephant) from data (observations)

Consider the following polynomial dynamical system:

f1(x1, x2, x3) = x1 ∧ x2 = x1x2

f2(x1, x2, x3) = x1 ∧ x2 ∧ x3 = x1x2x3

f3(x1, x2, x3) = x1 ∧ x2 = x1x2 .

The state space of the FDS map F = (f1, f2, f3) is the following graph:

001 010 011 100 101

000

110

111

Question

What if we only knew part of this state space, e.g.,

(1, 1, 0) −→ (1, 0, 1) −→ (0, 0, 0) −→ (0, 0, 0) .

Could we recover the individual functions? How many possible models could yield this
“fragment”?

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 5 / 29

mailto:macaule@clemson.edu

Reverse engineering

Broad goal

Find “the best” model F = (f1, . . . , fn) that fits the data:

Input states: s1, . . . , sm ∈ Fn

Output states: t1, . . . , tm ∈ Fn
with F (si) = ti

Note that: F (si) = (f1(si), f2(si), . . . , fn(si)) = (ti1, ti2, . . . , tin) = ti .

Question

What if no models fit the data?

What if many models fit the data? (This is more likely.)

First, we’ll find all models that fit the data. This is called the model space:

F1 × F2 × · · · × Fn =
{

(f1, . . . , fn) | fj (si) = tij for all i and j
}
.

Once we do this, the new problem becomes choosing the “best” one. This is called model
selection.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 6 / 29

mailto:macaule@clemson.edu

Similar problems in other areas of mathematics

1. Parametrize a line in Rn.

2. Parametrize a plane in Rn.

3. Solve the underdetermined system Ax = b.

4. Solve the differential equation x ′′ + x = 2.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 7 / 29

mailto:macaule@clemson.edu

Parametrize a line in Rn

Suppose we want to write the equation for a line that contains a vector v ∈ Rn:

x

y

z

v

t v
w

v+w

t v+w

This line, which contains the zero vector, is tv = {tv : t ∈ R}.

Now, what if we want to write the equation for a line parallel to v?

This line, which does not contain the zero vector, is

tv + w = {tv + w : t ∈ R} .

Note that ANY particular w on the line will work!!!

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 8 / 29

mailto:macaule@clemson.edu

Solve an underdetermined system Ax = b

Suppose we have a system of equations that has “too many variables,” so there are infinitely
many solutions.

For example:

2x + y − 3z = 4
3x − 5y +−2z = 6

“Ax = b form”:

[
2 1 −3
3 −5 −2

]xy
z

 =

[
4
6

]
.

How to solve:

1. Solve the related homogeneous equation Ax = 0 (this is null space, NS(A));

2. Find any particular solution xp to Ax = b;

3. Add these together to get the general solution: x = NS(A) + xp .

This works because geometrically, the solution space is just a line, plane, etc.

Here are two possible ways to write the solution:

C

 1
1
−1

+

2
0
0

, C

 1
1
−1

+

10
8
−8

.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 9 / 29

mailto:macaule@clemson.edu

Linear differential equations

Solve the differential equation x ′′ + x = 2.

How to solve:

1. Solve the related homogeneous equation x ′′ + x = 0. The solutions are
xh(t) = a cos t + b sin t.

2. Find any particular solution xp(t) to x ′′ + x = 2. By inspection, we see that xp(t) = 2
works.

3. Add these together to get the general solution:

x(t) = xh(t) + xp(t) = a cos t + b sin t + 2.

Note that while the general solution above is unique, its presentation need not be.

For example, we could write it this way:

x(t) = xh(t) + xp(t) = a(2 cos t − 3 sin t) + b sin t + (2− cos t + 8 sin t).

Here, the particular solution has (unnecessary) “extra terms” that vanish on the
homogeneous part, x ′′ + x = 0.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 10 / 29

mailto:macaule@clemson.edu

Reverse engineering: Problem statement

Definition

A finite dynamical system (FDS) is a function F = (f1, . . . , fn) : X n → X n where each
fi : X n → X is a local function and |X | <∞ (usually X = F2 = {0, 1}).

Key fact

If X = F is a finite field (e.g., Z2, Z3, Zp , etc.), then every function fi : Fn → F is a
polynomial in x1, . . . , xn.

Goal

Given a set of data:

Input states: s1, . . . , sm ∈ Fn

Output states: t1, . . . , tm ∈ Fn
with F (si) = ti

Construct the model space F1 × · · · × Fn of all models F = (f1, . . . , fn) that fit the data:

F (si) = (f1(si), . . . , fn(si)) = (ti1, . . . , tin) = ti .

We’ll find each F1, . . . ,Fn separately.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 11 / 29

mailto:macaule@clemson.edu

Reverse engineering: How to find Fj

We wish to find the set Fj of all local functions (polynomials!) fj that fit the data:

Fj = {fj : fj (s1) = t1j , . . . , fj (sm) = tmj} .

Define the set I (it is actually an “ideal” of the polynomial ring F[x1, . . . , xn])

I = {h : h(si) = 0 for all i = 1, . . . ,m}
= {all polynomials that vanish on the data}.

Theorem

The set of polynomials that fit the data at node j is

Fj = fj + I = {fj + h : h ∈ I} ,

where fj is any one particular polynomial that fits the data.

Thus, to find Fj , we need to do two things:

1. Find the ideal I ; (all solutions to {fj (si) = 0, ∀i})
2. Find any polynomial fj that fits the data. (one solution to {fj (si) = tij , ∀i})

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 12 / 29

mailto:macaule@clemson.edu

Reverse engineering: How to find I and fj

1. Finding I : Define I (si) to be the set of polynomials that vanish on si :

I (si) = {all polynomials hi such that hi (si) = 0}
= {(x1 − si1)g1(x) + (x2 − si2)g2(x) + · · ·+ (xn − sin)gn(x)}
= 〈x1 − si1, x2 − si2, . . . , xn − sin〉

Clearly, the set I of polynomials that vanish on all si (for i = 1, . . . ,m) is

I =
m⋂
i=1

I (si) .

2. Finding fj : There are many algorithms. Lagrange interpolation is one of them.

In this lecture, we will learn another method which has the Chinese remainder theorem
lurking behind the scenes.

We’ll get started with this now.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 13 / 29

mailto:macaule@clemson.edu

Finding fj (one method)

For each data point si (i = 1, . . . ,m), we’ll construct an r -polynomial that has the following
property:

ri (x) =

{
1 x = si
0 x 6= si

Once we have these, the polynomial fj (x) we seek will be

fj (x) = t1j r1(x) + t2j r2(x) + · · ·+ tmj rm(x) .

One way to construct the r -polynomials:

ri (x) =
m∏

k=1
k 6=i

bik (x) ,

where
bik (x) = (si` − sk`)p−2(x` − sk`)

and ` is the first coordinate in which si and sk differ. (Actually, any coordinate where they
differ will do.)

Remark

When our systems are Boolean (over F2), then this reduces to bik (x) = x` − sk`.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 14 / 29

mailto:macaule@clemson.edu

A Boolean example

Consider the following model of the lac operon, which
implicitly assumes that A degrades slower than M or B.


fM = xA
fB = xM
fA = L ∨ (B ∧ Lm) ∨ (A ∧ B).

If lactose levels are low, then L = Lm = 0, and this model in polynomial form becomes the
following PDS (left) and state space (right):

f1 = x3

f2 = x1

f3 = (x2 + 1)x3. 001 101 111 110 010 000

100011

Exercise

Let’s reverse engineer the Boolean network from just knowing the 6 red nodes and 5
transitions.

In other words, find all triples of polynomials f = (h1, h2, h3) such that:

f (0, 0, 1) = (h1(0, 0, 1), h2(0, 0, 1), h3(0, 0, 1)) = (1, 0, 1),

f (1, 0, 1) = (h1(1, 0, 1), h2(1, 0, 1), h3(1, 0, 1)) = (1, 1, 1),

f (1, 1, 1) = (h1(1, 1, 1), h2(1, 1, 1), h3(1, 1, 1)) = (1, 1, 0),

f (1, 1, 0) = (h1(1, 1, 0), h2(1, 1, 0), h3(1, 1, 0)) = (0, 1, 0),

f (0, 1, 0) = (h1(0, 1, 0), h2(0, 1, 0), h3(0, 1, 0)) = (0, 0, 0),

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 15 / 29

mailto:macaule@clemson.edu

A Boolean example (cont.)

Since we know the original functions a priori, we secretly know the answer to this.

(f1, f2, f3) = (x3, x1, (x2 + 1)x3).

001 101 111 110 010 000

100011

The ideal of polynomials that vanish on each sk is:

I1 = ideal(x1, x2, x3-1);

I2 = ideal(x1-1, x2, x3-1);

I3 = ideal(x1-1, x2-1, x3-1);

I4 = ideal(x1-1, x2-1, x3);

I5 = ideal(x1, x2-1, x3);

The ideal of polynomials that vanish on every sk is:

I = intersect{I1,I2,I3,I4,I5};

Thus, the complete model space is

F1 × F2 × F3, Fj = fj + I .

If we hadn’t known f1, f2, f3 a priori, then we’d have to find our own particular solution that
fits the data. We’ll do that now.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 16 / 29

mailto:macaule@clemson.edu

A Boolean example (cont.)

We’re looking for a single solution f = (f1, f2, f3) that fits the data.

We know how to do this. For example:

f1(x) = t11r1(x) + t21r2(x) + t31r3(x) + t41r4(x) + t51r5(x)

= 1r1(x) + 1r2(x) + 1r3(x) + 0r4(x) + 0r5(x) = r1(x) + r2(x) + r3(x) ,

where

r1(x) =
5∏

k=1
k 6=1

b1k (x) = b12(x)b13(x)b14(x)b15(x) .

s1 = (0, 0, 1)= t0

s2 = (1, 0, 1) = t1

s3 = (1, 1, 1) = t2

s4 = (1, 1, 0) = t3

s5 = (0, 1, 0) = t4

s6 =(0, 0, 0) = t5

Recall that b1k (x) = x` − sk`, where ` is the first coordinate that s1

differs from sk .

skip k = 1
b12(x) = (x1 − s21) = x1 + 1
b13(x) = (x1 − s31) = x1 + 1
b14(x) = (x1 − s41) = x1 + 1
b15(x) = (x2 − s52) = x2 + 1

Now, r1(x) = (x1 + 1)3(x2 + 1) = (x1 + 1)(x2 + 1).

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 17 / 29

mailto:macaule@clemson.edu

A Boolean example (cont.)

Recall that bik (x) = x` − sk`, where ` is the first coordinate that si differs from sk .

s1 = (0, 0, 1)= t0

s2 = (1, 0, 1) = t1

s3 = (1, 1, 1) = t2

s4 = (1, 1, 0) = t3

s5 = (0, 1, 0) = t4

s6 = (0, 0, 0) = t5

b21(x) = (x1 − s11) = x1

skip k = 2
b23(x) = (x2 − s32) = x2 + 1
b24(x) = (x2 − s42) = x2 + 1
b25(x) = (x1 − s51) = x1

b31(x) = (x1 − s11) = x1

b32(x) = (x2 − s22) = x2

skip k = 3
b34(x) = (x3 − s43) = x3

b35(x) = (x1 − s51) = x1

b41(x) = (x1 − s11) = x1

b42(x) = (x2 − s22) = x2

b43(x) = (x3 − s33) = x3 + 1
skip k = 4

b45(x) = (x1 − s51) = x1

b51(x) = (x2 − s12) = x2

b52(x) = (x1 − s21) = x1 + 1
b53(x) = (x1 − s31) = x1 + 1
b54(x) = (x1 − s42) = x1 + 1

skip k = 5

Recall that xki = xi , and (xj + 1)k = xj + 1, so the “r -polynomials” are

r1(x) = (x1 + 1)(x2 + 1)
r2(x) = x1(x2 + 1)
r3(x) = x1x2x3

r4(x) = x1x2(x3 + 1)
r5(x) = (x1 + 1)x2

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 18 / 29

mailto:macaule@clemson.edu

A Boolean example (cont.)

We can now compute our particular solution (f1, f2, f3) that fits the data, using:

fj (x) = t1j r1(x) + t2j r2(x) + · · ·+ tmj rm(x) .
s1 = (0, 0, 1)= t0

s2 = (1, 0, 1) = t1

s3 = (1, 1, 1) = t2

s4 = (1, 1, 0) = t3

s5 = (0, 1, 0) = t4

s6 = (0, 0, 0) = t5

f1(x) = t11r1(x) + t21r2(x) + t31r3(x) + t41r4(x) + t51r5(x)
= r1(x) + r2(x) + r3(x)
= 1 + x2 + x1x2x3

f2(x) = t12r1(x) + t22r2(x) + t32r3(x) + t42r4(x) + t52r5(x)
= r2(x) + r3(x) + r4(x)
= x1

f3(x) = t13r1(x) + t23r2(x) + t33r3(x) + t43r4(x) + t53r5(x)
= r1(x) + r2(x)
= 1 + x2.

Our original PDS was (f1, f2, f3) = (x3, x1, x3 + x2x3), but our algorithm yielded

(f1, f2, f3) = (1 + x2 + x1x2x3, x1, 1 + x2)

= (x3, x1, x3 + x2x3) + (1 + x2 + x3 + x1x2x3, 0, 1 + x2 + x3 + x2x3)

Remark

Each polynomial in the 2nd term above is in the vanishing ideal I . (Why?)

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 19 / 29

mailto:macaule@clemson.edu

A Boolean example (cont.)

Figure: Left. Phase space of the original PDS: (f1, f2, f3) = (x3, x1, x3(1 + x2)).

Middle. Phase space of the reverse-engineered PDS: (f1, f2, f3) = (1 + x2 + x1x2x3, x1, 1 + x2).

Right: Phase space of the reverse-engineered PDS, modulo I : (f1, f2, f3) = (x3, x1, 1 + x2)

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 20 / 29

mailto:macaule@clemson.edu

A Boolean example (cont.)

Now that we found a particular solution f = (f1, f2, f3) that fits the data, we need to
(re)compute the ideal I of polynomials that vanish on the data.

We’ll use Macaulay2 in Sage:

%default_mode macaulay2

R=ZZ/2[x1,x2,x3] / ideal(x1^2-x1, x2^2-x2, x3^2-x3);

s1 = (0, 0, 1)= t0

s2 = (1, 0, 1) = t1

s3 = (1, 1, 1) = t2

s4 = (1, 1, 0) = t3

s5 = (0, 1, 0) = t4

s6 =(0, 0, 0) = t5

The ideal of polynomials that vanish on each sk is:

I1 = ideal(x1, x2, x3-1);

I2 = ideal(x1-1, x2, x3-1);

I3 = ideal(x1-1, x2-1, x3-1);

I4 = ideal(x1-1, x2-1, x3);

I5 = ideal(x1, x2-1, x3);

The ideal of polynomials that vanish on every sk is:

I = intersect{I1,I2,I3,I4,I5}

To compute a Gröbner basis:

G = gens gb I

The output is: | x2x3+x2+x3+1 x1x2+x1x3+x1+x2+x3+1 |

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 21 / 29

mailto:macaule@clemson.edu

A Boolean example (cont.)

In conclusion, our model space of all PDSs (f1, f2, f3) that fit the data:

001 101 111 110 010 000

is the set
F1 × F2 × F3, Fj = fj + I

where I is the vanishing ideal

I = 〈g1, g2〉 = 〈1 + x2 + x3 + x2x3, 1 + x1 + x2 + x3 + x1x2 + x1x3〉 .

Our reverse-engineered PDS is slighly different than the “true model”:

(f1, f2, f3) = (1 + x2 + x1x2x3, x1, 1 + x2)
= (x3 + x1g1 + g2, x1, (x2 + 1)x3 + g1)

Note that x1g1 + g2, 0, and g1 must be in the vanishing ideal I .

Goal (“model selection”)

We would like to be able to recover functions in Fj = fj + I that have no “extra terms” in I .

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 22 / 29

mailto:macaule@clemson.edu

A Boolean example (cont.)

Goal (“model selection”)

We would like to be able to be able to recover functions in Fj = fj + I that have no “extra
terms” in I .

001 101 111 110 010 000

Fortunately, we can do this with Macaulay2. It’s called finding the remainder of fj modulo I ,
and we use the % symbol.

f1 = 1+x2+x1*x2*x3;

f2 = x1;

f3 = 1+x2;

f1%I;

f2%I;

f3%I;

The output is: x3, x1, x2+1. We successfully recovered 2 of the 3 original functions.

Question

What would happen if we:

added the (original) self-loop at 000 to the data?

removed the data point 010 −→ 000?

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 23 / 29

mailto:macaule@clemson.edu

An example over Z5

Consider the following time series in a 3-node system over Z5:

s1 = (2, 0, 0)= t0

s2 = (4, 3, 1) = t1

s3 = (3, 1, 4) = t2

s4 =(0, 4, 3) = t3

For reference, here are the input vectors si and output vectors ti :

s1 = (s11, s12, s13) = (2, 0, 0) , t1 = (t11, t12, t13) = (4, 3, 1) ,

s2 = (s21, s22, s23) = (4, 3, 1) , t2 = (t21, t22, t23) = (3, 1, 4) ,

s3 = (s31, s32, s33) = (3, 1, 4) , t3 = (t31, t32, t33) = (0, 4, 3) .

Note that s1 differs from s2 and s3 in the ` = 1 coodinate, so this ` will work for each of r1,
r2, and r3.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 24 / 29

mailto:macaule@clemson.edu

An example over Z5 (cont.)

Since we are working in Z5, we are taking the remainder of everything modulo 5.

Particularly useful identities are: 0 = 5, −1 = 4, −2 = 3, −3 = 2, and −4 = 1.

Using our formulas for bij (x), we compute:

b12(x) = (s11 − s21)3(x1 − s21) = (2− 4)3(x1 − 4) = −8(x1 + 1) = 2x1 + 2

b13(x) = (s11 − s31)3(x1 − s31) = (2− 3)3(x1 − 3) = −x1 + 3 = 4x1 + 3 .

Therefore, the first r -polynomial is

r1(x) = b12(x)b13(x) = (2x1 + 2)(4x1 + 3) = 8x2
1 + 14x1 + 6 = 3x2

1 + 4x1 + 1 .

In-class Exercise

Compute the other two r -polynomials in this example: r2(x) and r3(x).

Solution: r2(x) = 3x2
1 + 3 , r3(x) = 4x2

1 + x1 + 2.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 25 / 29

mailto:macaule@clemson.edu

An example over Z5 (cont.)

In summary, we computed the r -polynomials to be:

r1(x) = b12(x)b13(x) = (2x1 + 2)(4x1 + 3) = 8x2
1 + 14x1 + 6 = 3x2

1 + 4x1 + 1

r2(x) = b21(x)b23(x) = (3x1 + 4)(x1 + 2) = 3x2
1 + 10x1 + 8 = 3x2

1 + 3

r2(x) = b31(x)b32(x) = (x1 + 3)(4x1 + 4) = 4x2
1 + 16x1 + 12 = 4x2

1 + x1 + 2

Thus, the following functions fit the data:

f1(x) = t11r1(x) + t21r2(x) + t31r3(x)

= 4(3x2
1 + 4x1 + 1) + 3(3x2

1 + 3) + 0(4x2
1 + x1 + 2)

= x2
1 + x1 + 3

f2(x) = t12r1(x) + t22r2(x) + t32r3(x)

= 3(3x2
1 + 4x1 + 1) + 1(3x2

1 + 3) + 4(4x2
1 + x1 + 2)

= 3x2
1 + x1 + 4

f2(x) = t13r1(x) + t23r2(x) + t33r3(x)

= 1(3x2
1 + 4x1 + 1) + 4(3x2

1 + 3) + 3(4x2
1 + x1 + 2)

= 2x2
1 + 2x1 + 4

Comments on this? [Note that only the variable x1 appears.]

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 26 / 29

mailto:macaule@clemson.edu

An example over Z5 (cont.)

Recall that the ideal I is the set I of polynomials that vanish on all si :

I = I (s1) ∩ I (s2) ∩ I (s3) ,

where
s1 = (2, 0, 0) , s2 = (4, 3, 1) , s3 = (3, 1, 4) .

These are precisely the sets

I (s1) = 〈x1 − 2, x2, x3〉 = {(x1 − 2)g1(x) + x2g2(x) + x3g3(x)}
I (s2) = 〈x1 − 4, x2 − 3, x3 − 1〉 = {(x1 − 4)g1(x) + (x2 − 3)g2(x) + (x3 − 1)g3(x)}
I (s3) = 〈x1 − 3, x2 − 1, x3 − 4〉 = {(x1 − 3)g1(x) + (x2 − 1)g2(x) + (x3 − 4)g3(x)}

We’ll use Macaulay2 in Sage again to compute this. Remember to work over Z5:

%default_mode macaulay2

R=ZZ/5[x1,x2,x3] / ideal(x1^5-x1, x2^5-x2, x3^5-x3);

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 27 / 29

mailto:macaule@clemson.edu

An example over Z5 (cont.)
As before, we can compute the vanishing ideal I :

I1 = ideal(x1-2, x2, x3);

I2 = ideal(x1-4, x2-3, x3-1);

I3 = ideal(x1-3, x2-1, x3-4);

I = intersect{I1,I2,I3};

f1 = x1^2+x1+3;

f2 = 3*x1^2+x1+4;

f3 = 2*x1^2+2*x1+4;

We can view the Gröbner basis (w.r.t. the default monomial ordering, grevlex):

flatten entries gens gb I;

The output is:

2 2

{x1 - 2x2 - x3 - 2, x3 + 2x2 - 2x3, x2*x3 + 2x2 + x3, x2 + x3}

which means G = {x1 − 2x2 − x3 − 2, x2
3 + 2x2 − 2x3, x2x3 + 2x2 + x3, x2

2 + x3}.

If we reduce each fi modulo I : p1=f1%I; and p2=f2%I; and p1=f3%I; we get

(p1, p2, p3) = (−x3 − 1, x2 − 2, −2x3 + 1).

This is called the normal form of fj with respect to the Gröbner basis G.

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 28 / 29

mailto:macaule@clemson.edu

An aside: why monomial order matters!

Let’s do the same thing but using lex instead of grevlex:

S=ZZ/5[x1,x2,x3] / ideal(x1^5-x1, x2^5-x2, x3^5-x3);

p1 = sub(f1,S)%sub(I,S);

p2 = sub(f2,S)%sub(I,S);

p3 = sub(f3,S)%sub(I,S);

These polynomials are now (p1, p2, p3) = (−x3 − 1, 2x2
3 + x3 − 2, −2x3 + 1). They are

different because the Gröbner basis of I is different with respect to lex:

flatten entries gens gb sub(I,S);

The output is G = {x3
3 − x3, x2 − 2x2

3 − x3, x1 + x2
3 + 2x3 − 2}.

In summary, the model space is

F1 × · · · × Fn = f + (I × · · · × I) = (f1 + I , . . . , fn + I) .

Here are three choices for the “particular” solution f = (f1, f2, f3) that fits the data:

our algorithm: (f1, f2, f3) = (x2
1 + x1 + 3, 3x2

1 + x1 + 4, 2x2
1 + 2x1 + 4).

normal form w.r.t. grevlex: (f1, f2, f3) = (−x3 − 1, 2x2
3 + x3 − 2, −2x3 + 1).

normal form w.r.t. lex: (f1, f2, f3) = (−x3 − 1, x2 − 2, −2x3 + 1).

M. Macauley (Clemson) Reverse engineering using computational algebra Math 4500, Fall 2016 29 / 29

mailto:macaule@clemson.edu

