- 1. Let $T: X \to U$ be a linear map. Prove the following:
 - (a) The image of a subspace of X is a subspace of U.
 - (b) The inverse image of a subspace of U is a subspace of X.
- 2. Prove Theorem 3.3 in Lax:
 - (a) The composite of linear mappings is also a linear mapping.
 - (b) Composition is distributive with respect to the addition of linear maps, that is,

$$(R+S) \circ T = R \circ T + S \circ T$$

and

$$S \circ (T+P) = S \circ T + S \circ P$$

where $R, S: U \to V$ and $P, T: X \to U$.

- 3. Show that whenever meaningful,
 - (a) (ST)' = T'S'
 - (b) (T+R)' = T' + R'
 - (c) $(T^{-1})' = (T')^{-1}$.

Here, S' denotes the transpose of S. Carefully describe what you mean by "whenever meaningful" in each case.

- 4. Give a direct algebraic proof of $N_{T'}^{\perp} = (R_T^{\perp})^{\perp}$. (You may use the fact that $N_{T'} = R_T^{\perp}$, but don't simply take the annihilator of both sides of this equation.)
- 5. Suppose $T: X \to X$ is a linear map of rank 1.
 - (a) Show that there exists $c \in K$ such that $T^2 = cT$.
 - (b) Show that if $c \neq 1$, then I T has an inverse.
- 6. Suppose that $S, T: X \to X$ are linear maps.
 - (a) Show that $\operatorname{rank}(S+T) \leq \operatorname{rank}(S) + \operatorname{rank}(T)$.
 - (b) Show that $\operatorname{rank}(ST) \leq \operatorname{rank}(S)$.
 - (c) Show that $\dim(N_{ST}) \leq \dim N_S + \dim N_T$.

For each of these, give an explicit example showing how equality need not hold.