Read: Lax, Chapter 6, pages 69–76.

1. Do the following for the matrix A below, and then repeat it for B:

	[-1]	0	1	0			[1	0	0	1]	
A =	2	1	2	1	,	D	2	1	0	-4	
	0	0	-1	0		$B \equiv$	1	0	1	-2	
	4	0	-6	1			0	0	0	1	

- (a) Find the characteristic polynomial and all (genuine) eigenvectors.
- (b) For each eigenvalue λ , compute dim $N_{(A-\lambda I)^j}$ for $j = 1, 2, 3, \ldots$
- (c) Find a basis of \mathbb{C}^4 consisting of generalized eigenvectors.
- (d) Factor the matrix as a product PJP^{-1} , where the columns of P are the generalized eigenvectors and J is the matrix of the linear map with respect to this new basis.
- 2. Let A be an $n \times n$ matrix over \mathbb{C} with an eigenvalue λ of index $m \geq 2$ and corresponding eigenvector v_1 . Let v_2 be a generalized eigenvector satisfying $(A \lambda I)v_2 = v_1$.
 - (a) Prove that for any natural number N,

$$A^N v_2 = \lambda^N v_2 + N \lambda^{N-1} v_1$$

(b) Prove that for any polynomial $q(t) \in \mathbb{C}[t]$,

$$q(A)v_2 = q(\lambda)v_2 + q'(\lambda)v_1$$

where q'(t) is the derivative of q.

- (c) Conjecture a formula for $q(A)v_m$, where v_1, \ldots, v_m are generalized eigenvectors of A with $(A \lambda I)v_k = v_{k-1}$ (and say $v_0 = 0$, for convenience).
- 3. Let λ be an eigenvalue of A, and let N_i be the nullspace of $(A \lambda I)^i$. Prove that $A \lambda I$ extends to a well-defined map $N_{i+1}/N_i \longrightarrow N_i/N_{i-1}$, and that this mapping is 1–1.
- 4. Let X be an n-dimensional vector space, and $A: X \to X$ a linear map with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Let v_1, \ldots, v_n be the corresponding eigenvectors of A, and let ℓ_1, \ldots, ℓ_n be the corresponding eigenvectors of the transpose $A': X' \to X'$.
 - (a) Prove that $(\ell_i, v_i) \neq 0$ for $i = 1, \ldots, n$.
 - (b) Show that if $x = a_1v_1 + \cdots + a_nv_n$, then $a_i = (\ell_i, x)/(\ell_i, v_i)$.
 - (c) Is ℓ_1, \ldots, ℓ_n necessarily the dual basis of v_1, \ldots, v_n ? Why or why not?