Lecture 5.7: Finite simple groups

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Overview

Definition

A group G is simple if its only normal subgroups are G and $\langle e \rangle$.

Since all Sylow *p*-subgroups are conjugate, the following result is straightforward:

Proposition (HW)

A Sylow *p*-subgroup is normal in *G* if and only if it is the unique Sylow *p*-subgroup (that is, if $n_p = 1$).

The Sylow theorems are very useful for establishing statements like:

There are no simple groups of order k (for some k).

To do this, we usually just need to show that $n_p = 1$ for some p dividing |G|.

Since we established $n_5 = 1$ for our running example of a group of size $|M| = 200 = 2^3 \cdot 5^2$, there are no simple groups of order 200.

An easy example

Tip

When trying to show that $n_p = 1$, it's usually more helpful to analyze the largest primes first.

Proposition

There are no simple groups of order 84.

Proof

Since $|G| = 84 = 2^2 \cdot 3 \cdot 7$, the Third Sylow Theorem tells us:

- n_7 divides $2^2 \cdot 3 = 12$ (so $n_7 \in \{1, 2, 3, 4, 6, 12\}$)
- \blacksquare $n_7 \equiv_7 1$.

The only possibility is that $n_7 = 1$, so the Sylow 7-subgroup must be normal.

Observe why it is beneficial to use the largest prime first:

- n_3 divides $2^2 \cdot 7 = 28$ and $n_3 \equiv_3 1$. Thus $n_3 \in \{1, 2, 4, 7, 14, 28\}$.
- n_2 divides $3 \cdot 7 = 21$ and $n_2 \equiv_2 1$. Thus $n_2 \in \{1, 3, 7, 21\}$.

A harder example

Proposition

There are no simple groups of order 351.

Proof

Since $|G| = 351 = 3^3 \cdot 13$, the Third Sylow Theorem tells us:

- n_{13} divides $3^3 = 27$ (so $n_{13} \in \{1, 3, 9, 27\}$)
- $n_{13} \equiv_{13} 1$.

The only possibilies are $n_{13} = 1$ or 27.

A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order $3^3=27$. Therefore, $P\cap Q=\{e\}$.

Suppose $n_{13} = 27$. Every Sylow 13-subgroup contains 12 non-identity elements, and so G must contain $27 \cdot 12 = 324$ elements of order 13.

This leaves 351 - 324 = 27 elements in G not of order 13. Thus, G contains only one Sylow 3-subgroup (i.e., $n_3 = 1$) and so G cannot be simple.

The hardest example

Proposition

If $H \subseteq G$ and |G| does not divide [G:H]!, then G cannot be simple.

Proof

Let G act on the **right cosets** of H (i.e., S = G/H) by **right-multiplication**:

$$\phi\colon G\longrightarrow \mathsf{Perm}(S)\cong S_n\,,\qquad \phi(g)=\mathsf{the}\ \mathsf{permutation}\ \mathsf{that}\ \mathsf{sends}\ \mathsf{each}\ \mathit{Hx}\ \mathsf{to}\ \mathit{Hxg}.$$

Recall that the kernel of ϕ is the intersection of all conjugate subgroups of H:

$$\operatorname{Ker} \phi = \bigcap_{x \in G} x^{-1} Hx.$$

Notice that $\langle e \rangle \leq \operatorname{Ker} \phi \leq H \subsetneq G$, and $\operatorname{Ker} \phi \triangleleft G$.

If Ker $\phi = \langle e \rangle$ then $\phi \colon G \hookrightarrow S_n$ is an embedding. But this is *impossible* because |G| does not divide $|S_n| = [G \colon H]!$.

Corollary

There are no simple groups of order 24.

Theorem (classification of finite simple groups)

Every finite simple group is isomorphic to one of the following groups:

- A cyclic group \mathbb{Z}_p , with p prime;
- An alternating group A_n , with $n \ge 5$;
- A Lie-type Chevalley group: PSL(n,q), PSU(n,q), PsP(2n,p), and $P\Omega^{\epsilon}(n,q)$;
- A Lie-type group (twisted Chevalley group or the Tits group): $D_4(q)$, $E_6(q)$, $E_7(q)$, $E_8(q)$, $F_4(q)$, ${}^2F_4(2^n)'$, $G_2(q)$, ${}^2G_2(3^n)$, ${}^2B(2^n)$;
- One of 26 exceptional "sporadic groups."

The two largest sporadic groups are the:

■ "baby monster group" B, which has order

$$|B| = 2^{41} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47 \approx 4.15 \times 10^{33};$$

■ "monster group" *M*, which has order

$$|\textit{M}| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8.08 \times 10^{53}.$$

The proof of this classification theorem is spread across $\approx 15{,}000$ pages in ≈ 500 journal articles by over 100 authors, published between 1955 and 2004.

The Periodic Table Of Finite Simple Groups

Finite Simple Group (of Order Two), by The Klein FourTM

Musical Fruitcake

View More by This Artist

Klein Four

Open iTunes to preview, buy, and download music.

View in iTunes

\$9.99

Genres: Pop, Music Released: Dec 05, 2005 ® 2005 Klein Four

Customer Ratings

★★★★ 13 Ratings

	Name	Artist	Time	Price	
1	Power of One	Klein Four	5:16	\$0.99	View In iTunes ▶
2	Finite Simple Group (of Order Two)	Klein Four	3:00	\$0.99	View In iTunes ▶
3	Three-Body Problem	Klein Four	3:17	\$0.99	View In iTunes ▶
4	Just the Four of Us	Klein Four	4:19	\$0.99	View In iTunes ▶
5	Lemma	Klein Four	3:43	\$0.99	View In iTunes ▶
6	Calculating	Klein Four	4:09	\$0.99	View In iTunes ▶
7	XX Potential	Klein Four	3:42	\$0.99	View In iTunes ▶
8	Confuse Me	Klein Four	3:41	\$0.99	View In iTunes ▶
9	Universal	Klein Four	4:13	\$0.99	View In iTunes ▶
10	Contradiction	Klein Four	3:48	\$0.99	View In iTunes ▶
11	Mathematics Paradise	Klein Four	3:51	\$0.99	View In iTunes ▶
12	Stefanie (The Ballad of Galois)	Klein Four	4:51	\$0.99	View In iTunes ▶
13	Musical Fruitcake (Pass it Around)	Klein Four	2:50	\$0.99	View In iTunes ▶
14	Abandon Soap	Klein Four	2:17	\$0.99	View In iTunes ▶
		14 Songs			