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Overview

Intuitively, a group action occurs when a group G “naturally permutes” a set S of
states.

For example:

m The “Rubik’s cube group” consists of the 4.3 x 10'° actions that permutated
the 4.3 x 10 configurations of the cube.

m The group Dy consists of the 8 symmetries of the square. These symmetries are
actions that permuted the 8 configurations of the square.

Group actions help us understand the interplay between the actual group of actions
and sets of objects that they ‘“rearrange.”

There are many other examples of groups that “act on” sets of objects. We will see
examples when the group and the set have different sizes.

There is a rich theory of group actions, and it can be used to prove many deep
results in group theory.
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Actions vs. configurations

The group Da can be thought of as the 8 symmetries of the square: 31' g

There is a subtle but important distinction to make, between the actual 8 symmetries
of the square, and the 8 configurations.

For example, the 8 symmetries (alternatively, “actions”) can be thought of as
e, r, r, r, f, rf, r°F, r°f.

The 8 configurations (or states) of the square are the following:

—
N W
N =
w

3 4 23 32
211 14 41

21
3 4

1
2

4
3

12
4 3

When we were just learning about groups, we made an action diagram.

m The vertices correspond to the states.
m The edges correspond to generators.
m The paths corresponded to actions (group elements).
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Actions diagrams

Here is the action diagram of the group D4 = (r, f):

211 14
34 23
12 471
43 32

y

23 34

14 211
32 43
41 12

In the beginning of this course, we picked a configuration to be the “solved state,”
and this gave us a bijection between configurations and actions (group elements).

The resulting diagram was a Cayley diagram. In this section, we’ll skip this step.
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Actions diagrams

In all of the examples we saw in the beginning of the course, we had a bijective
correspondence between actions and states. This need not always happen!

Suppose we have a size-7 set consisting of the following “binary squares.”

(0 B H N B

The group Dy = (r,f) “acts on S" as follows:

| Vi

The action diagram above has some properties of Cayley diagrams, but there are
some fundamental differences as well.

oo

oo
oo

M. Macauley (Clemson) Section 5: Groups acting on sets Math 4120, Modern Algebra 5 /56


mailto:macaule@clemson.edu

A “group switchboard”

Suppose we have a “switchboard” for G, with every element g € G having a
“button.”

If a € G, then pressing the a-button rearranges the objects in our set S. In fact, it is
a permutation of S; call it ¢(a).

If b € G, then pressing the b-button rearranges the objects in S a different way. Call
this permutation ¢(b).

The element ab € G also has a button. We require that pressing the ab-button yields
the same result as pressing the a-button, followed by the b-button. That is,

¢(ab) = ¢p(a)p(b), foralla,be G.

Let Perm(S) be the group of permutations of S. Thus, if |S| = n, then
Perm(S) 2 S,. (We typically think of S, as the permutations of {1,2,...,n}.)

Definition
A group G acts on a set S if there is a homomorphism ¢: G — Perm(S). J
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A “group switchboard”

Returning to our binary square example, pressing the r-button and f-button
permutes the set S as follows:

Observe how these permutations are encoded in the action diagram:

oo
oo

o
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Left actions vs. right actions (an annoyance we can deal with)

As we've defined group actions, “pressing the a-button followed by the b-button
should be the same as pressing the ab-button.”

However, sometimes it has to be the same as “pressing the ba-button.”

This is best seen by an example. Suppose our action is conjugation:

“Left group action” “Right group action”
cor;)jugate cor;jugbate cor;)jugate corl;jugbate
H —— aHa=! ——— baHa~'b~! H———— a~'Ha ——— b~la~'Hab
\WM w
¢(a)p(b) = ¢(ba) ¢(a)p(b) = ¢(ab)

Some books forgo our “¢-notation” and use the following notation to distinguish left
vs. right group actions:

g.(h.s) = (gh).s, (s.g).h=s.(gh).

We'll usually keep the ¢, and write ¢(g)p(h)s = ¢(gh)s and s.¢(g)d(h) = s.¢(gh).
As with groups, the “dot” will be optional.
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Left actions vs. right actions (an annoyance we can deal with)
Alternative definition (other textbooks)
A right group action is a mapping
GxS—S, (a,s) —> s.a

such that
m s.(ab) = (s.a).b, foralla,be Gandse S

mse—s, forallseS.

A left group action can be defined similarly.
Pretty much all of the theorems for left actions hold for right actions.

Usually if there is a left action, there is a related right action. We will usually use
right actions, and we will write

s.9(g)

for “the element of S that the permutation ¢(g) sends s to,” i.e., where pressing the
g-button sends s.

If we have a left action, we'll write ¢(g).s.
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Cayley diagrams as action diagrams

Every Cayley diagram can be thought of as the action diagram of a particular (right)
group action.

For example, consider the group G = D4 = (r, f) acting on itself. That is,
S=Dy={er,r’r* f rf r*f r*f}.

Suppose that pressing the g-button on our “group switchboard” multiplies every
element on the right by g.

Here is the action diagram:

We say that "G acts on itself by right-multiplication.”
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Orbits, stabilizers, and fixed points

Suppose G acts on a set S. Pick a configuration s € S. We can ask two questions
about it:

(i) What other states (in S) are reachable from s? (We call this the orbit of s.)

(i) What group elements (in G) fix 57 (We call this the stabilizer of s.)

Definition
Suppose that G acts on a set S (on the right) via ¢: G — S.
(i) The orbit of s € S is the set

Orb(s) = {s.¢(g) | g € G} .
(ii) The stabilizer of s in G is
Stab(s) = {g € G | s.¢(g) = s}

(iii) The fixed points of the action are the orbits of size 1:

Fix(¢) ={s € S |s.¢(g) =s forall g€ G}.

Note that the orbits of ¢ are the connected components in the action diagram.
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Orbits, stabilizers, and fixed points

Let's revisit our running example:

oo
oo

o oaf—oo

The orbits are the 3 connected components. There is only one fixed point of ¢. The
stabilizers are:

Stab():D4, Stab():{e,rz,rf,r3f}, Stab()
Stab():{e,rz,rf,r3f}, Stab(): e, r*f},

(6

(EH)

Observations?
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Orbits and stabilizers
Proposition

For any s € S, the set Stab(s) is a subgroup of G.

Proof (outline)
To show Stab(s) is a group, we need to show three things:
(i) Contains the identity. That is, s.¢(e) = s.
(i) Inverses exist. That is, if s.¢(g) = s, then s.¢(g™*) = s.
(iii) Closure. That is, if s.¢(g) = s and s.¢(h) = s, then s.¢(gh) = s.

You'll do this on the homework.

Remark
The kernel of the action ¢ is the set of all group elements that fix everything in S:

Kero={geG|p(g)=e}={g€G|s.p(g)=s forall se S}.

Notice that
Ker ¢ = ﬂ Stab(s) .

seES

v
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The Orbit-Stabilizer Theorem

The following result is another one of the central results of group theory.

Orbit-Stabilizer theorem
For any group action ¢: G — Perm(S), and any s € S,

| Orb(s)| - | Stab(s)| = |G] .

Proof

Since Stab(s) < G, Lagrange's theorem tells us that
[G: Stab(s)]-|Stab(s)| = |G]|.
—_——— ——

number of cosets size of subgroup

Thus, it suffices to show that | Orb(s)| = [G: Stab(s)].

Goal: Exhibit a bijection between elements of Orb(s), and right cosets of Stab(s).

That is, two elements in G send s to the same place iff they're in the same coset.
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The Orbit-Stabilizer Theorem: | Orb(s)| - | Stab(s)| = |G|

Proof (cont.)

Let’s look at our previous example to get some intuition for why this should be true.

We are seeking a bijection between Orb(s), and the right cosets of Stab(s).

That is, two elements in G send s to the same place iff they're in the same coset.

Lets:

Then Stab(s) = (f).

Partition of Dy by the
right cosets of H :

G = D4 and H = (f)

e r r2 r3
fo| fr|f?|f
H Hr Hr?2 HAS

o

H |t

Note that s.¢(g) = s.¢(k) iff g and k are in the same right coset of H in G.
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The Orbit-Stabilizer Theorem: | Orb(s)| - | Stab(s)| = |G|
Proof (cont.)
Throughout, let H = Stab(s).
“=" If two elements send s to the same place, then they are in the same coset.

Suppose g, k € G both send s to the same element of S. This means:

s.p(g) =s.p(k) = s.9(g)p(k) ' =s
= so(g)p(k) =s
=  sop(gk ') =s (i.e., gk~ ! stabilizes s)
= gk'eH (recall that H = Stab(s))
— Hgk™'=H
— Hg = Hk

“<" If two elements are in the same coset, then they send s to the same place.
Take two elements g, k € G in the same right coset of H. This means Hg = Hk.

This is the last line of the proof of the forward direction, above. We can change each
— into <=, and thus conclude that s.¢(g) = s.¢(k). O

4

If we have instead, a left group action, the proof carries through but using left cosets.
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Groups acting on elements, subgroups, and cosets

It is frequently of interest to analyze the action of a group G on its elements,
subgroups, or cosets of some fixed H < G.

Sometimes, the orbits and stabilizers of these actions are actually familiar algebraic
objects.

Also, sometimes a deep theorem has a slick proof via a clever group action.

For example, we will see how Cayley's theorem (every group G is isomorphic to a
group of permutations) follows immediately once we look at the correct action.

Here are common examples of group actions:

G acts on itself by right-multiplication (or left-multiplication).

G acts on itself by conjugation.

G acts on its subgroups by conjugation.

G acts on the right-cosets of a fixed subgroup H < G by right-multiplication.

For each of these, we'll analyze the orbits, stabilizers, and fixed points.
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Groups acting on themselves by right-multiplication

We've seen how groups act on themselves by right-multiplication. While this action
is boring (any Cayley diagram is an action diagram!), it leads to a slick proof of
Cayley's theorem.

Cayley's theorem
If |G| = n, then there is an embedding G < S,,.

Proof.
The group G acts on itself (that is, S = G) by right-multiplication:

¢Z G — Perm(S) ~S, 9 ¢(g) = the permutation that sends each x — xg.

There is only one orbit: G = S. The stabilizer of any x € G is just the identity
element:
Stab(x) = {g € G | xg = x} = {e}.

Therefore, the kernel of this action is Ker ¢ = ﬂ Stab(x) = {e}.
x€G

Since Ker ¢ = {e}, the homomorphism ¢ is an embedding. O
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Groups acting on themselves by conjugation
Another way a group G can act on itself (that is, S = G) is by conjugation:

¢: G — Perm(S) s ¢(g) = the permutation that sends each x — g~ !xg.
m The orbit of x € G is its conjugacy class:
Orb(x) = {x.¢(g) | g € G} = {g 'xg | g € G} = clg(x).
m The stabilizer of x is the set of elements that commute with x; called its
centralizer:

Stab(x) ={g € G | g7 'xg = x} = {g € G | xg = gx} := Cs(x)

m The fixed points of ¢ are precisely those in the center of G:
Fix(¢) = {x € G| g 'xg = x for all g € G} = Z(G).

By the Orbit-Stabilizer theorem, |G| = | Orb(x)| - | Stab(x)| = | clg(x)]| - | Ce(x)|-
Thus, we immediately get the following new result about conjugacy classes:

Theorem
For any x € G, the size of the conjugacy class clg(x) divides the size of G. J
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Groups acting on themselves by conjugation
As an example, consider the action of G = Ds on itself by conjugation.

2 20 4
The orbits of the action are the € T foorf

conjugacy classes:

| ff Bf of

The fixed points of ¢ are the size-1 conjugacy classes. These are the elements in the
center: Z(Dg) = {e} U {r’} = ().
By the Orbit-Stabilizer theorem:
| De| 12
Stab(x)| = = .
15100 = Tom(] = Tele(x)

The stabilizer subgroups are as follows:

Stab(e) = Stab(r®) = D,

Stab(r) = Stab(r?) = Stab(r*) = Stab(r®) = (r) = G,
Stab(f) = {e, r*,f, r*f} = (r3,f),

Stab(rf) = {e, 13, rf, r*f} = (r3, rf),

Stab(r'f) = {e, r*, r'f,rif} = (r? r'f).

M. Macauley (Clemson) Section 5: Groups acting on sets Math 4120, Modern Algebra 20 / 56


mailto:macaule@clemson.edu

Groups acting on subgroups by conjugation
Let G = Ds, and let S be the set of proper subgroups of G:

7: D3 — Perm(S),

() = (e (n

() = (e (N

T(rPf) = (e} (n

M. Macauley (Clemson)

s ={(e)

There is a right group action of D3 =

() (rf)  (r%f)
Y )

(fy () (2F)
N

() (rf)  (r%f)
| | S

(f) <rf> <r f)

() (rf)  (r%f)
/N

() (rf)  (r%f)
|
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), (), (PO}

(r,f) on S by conjugation:

T(g) — the permutation that sends each H to g_ng.

Q
()

CEO E@—®

The action diagram.

Stab((e)) = Stab((r)) = Ds = Np,(({r))
Stab((f)) = (f) = No,((f)),
Stab((rf)) = (rf) = Np, ((rf)),
Stab((r?f)) = (r*f) = Np,({r*f)).
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Groups acting on subgroups by conjugation

More generally, any group G acts on its set S of subgroups by conjugation:
¢: G — Perm(S), @(g) = the permutation that sends each H to g ' Hg.

This is a right action, but there is an associated left action: H — gHg '
Let H < G be an element of S.

m The orbit of H consists of all conjugate subgroups:

Orb(H) = {g 'Hg | g € G}.
m The stabilizer of H is the normalizer of H in G:
Stab(H) = {g € G | g 'Hg = H} = Nc(H).
m The fixed points of ¢ are precisely the normal subgroups of G:
Fix(¢) ={H < G| g 'Hg = H forall g € G}.

m The kernel of this action is G iff every subgroup of G is normal. In this case, ¢
is the trivial homomorphism: pressing the g-button fixes (i.e., normalizes) every
subgroup.
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Groups acting on cosets of H by right-multiplication
Fix a subgroup H < G. Then G acts on its right cosets by right-multiplication:

¢: G— Perm(S), (b(g) = the permutation that sends each Hx to Hxg.

Let Hx be an element of S = G/H (the right cosets of H).
m There is only one orbit. For example, given two cosets Hx and Hy,

#(x"'y) sends Hx — Hx(x"'y) = Hy.

m The stabilizer of Hx is the conjugate subgroup x~!Hx:
Stab(Hx) = {g € G | Hxg = Hx} = {g € G | Hxgx ' = H} = x 'Hx.

m Assuming H # G, there are no fixed points of ¢. The only orbit has size

[G:H]>1.
m The kernel of this action is the intersection of all conjugate subgroups of H:

Ker ¢ = ﬂ x Hx
x€G
Notice that (e) < Ker¢ < H, and Ker¢p = H iff H < G.
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Fixed points of group actions

Recall the subtle difference between fixed points and stabilizers:

m The fixed points of an action ¢: G — Perm(S) are the elements of S fixed by
every g € G.

m The stabilizer of an element s € S is the set of elements of G that fix s.

Lemma

If a group G of prime order p acts on a set S via ¢: G — Perm(S), then

|Fix(¢)| =[S (mod p).

Proof (sketch)

Fix(¢) non-fixed points all in size-p orbits

By the Orbit-Stabilizer theorem, all
orbits have size 1 or p.

I'll let you fill in the details. o
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Cauchy's Theorem
Cauchy's theorem

If p is a prime number dividing |G|, then G has an element g of order p.

Proof

Let P be the set of ordered p-tuples of elements from G whose product is e, i.e.,
(X1, %2, ..., Xp) € P iff x1x0---x, = €.

Observe that |P| = |G|?~!. (We can choose xi, ..., xp_1 freely; then x, is forced.)

The group Z, acts on P by cyclic shift:

1
¢: Zp, — Perm(P), (X1, %2, -y Xp) 24 (X2, X3+« Xp,y X1) -
(This is because if x1x2 - - x, = €, then x2x3 - - - x,x1 = e as well.)

The elements of P are partitioned into orbits. By the orbit-stabilizer theorem,
| Orb(s)| = [Z, : Stab(s)], which divides |Z,| = p. Thus, | Orb(s)| =1 or p.

Observe that the only way that an orbit of (x1,x2,...,xp,) could have size 1 is if
XL =X =+ = Xp.
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Cauchy’s Theorem
Proof (cont.)
Clearly, (e, e,...,e) € P, and the orbit containing it has size 1.

Excluding (e, ..., e), there are |G|P~* — 1 other elements in P, and these are
partitioned into orbits of size 1 or p.

Since pt|G|P~* — 1, there must be some other orbit of size 1.

Thus, there is some (x,x,...,x) € P, with x # e such that x” = e. a

Corollary
If p is a prime number dividing |G|, then G has a subgroup of order p.

Note that just by using the theory of group actions, and the orbit-stabilzer theorem,
we have already proven:

m Cayley's theorem: Every group G is isomorphic to a group of permutations.
m The size of a conjugacy class divides the size of G.
m Cauchy's theorem: If p divides |G|, then G has an element of order p.
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Classification of groups of order 6

By Cauchy's theorem, every group of order 6 must have an element a of order 2, and
an element b of order 3.

Clearly, G = (a, b) for two such elements. Thus, G must have a Cayley diagram that
looks like the following:

OF—E—®
C—@—

It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

O—O—@ © Ov@

C—@— 0@@
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p-groups and the Sylow theorems

Definition
A p-group is a group whose order is a power of a prime p. A p-group that is a
subgroup of a group G is a p-subgroup of G.

Notational convention

Throughout, G will be a group of order |G| = p" - m, with p{ m. That is, p” is the
highest power of p dividing |G|.

There are three Sylow theorems, and loosely speaking, they describe the following
about a group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.
2. Relationship: All maximal p-subgroups are conjugate.

3. Number: There are strong restrictions on the number of p-subgroups a group
can have.

Together, these place strong restrictions on the structure of a group G with a fixed
order.
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p-groups
Before we introduce the Sylow theorems, we need to better understand p-groups.

Recall that a p-group is any group of order p". For example, Ci, Cs, V4, Dy and Qg
are all 2-groups.

p-group Lemma
If a p-group G acts on a set S via ¢: G — Perm(S), then
| Fix(¢)| =5 |S].
Proof (sketch)
Fix(¢) non-fixed points all in size—pk orbits
Suppose |G| = p". R
p elts T p' elts Tp elts
By the Orbit-Stabilizer theorem, the © o o2
I ible orbit si
c1>npy ;ossn epsr it sizes are o fp3 eltsi (’j:t\{}
b 7 PR . (e} /3 ‘IO
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p-groups
Normalizer lemma, Part 1
If H is a p-subgroup of G, then

[Ne(H): H] =, [G: H].

Proof

Let S = G/H = {Hx | x € G}. The group H acts on S by right-multiplication, via
¢: H— Perm(S), where

¢(h) = the permutation sending each Hx to Hxh.
The fixed points of ¢ are the cosets Hx in the normalizer Ng(H):

Hxh = Hx, Yhe H = Hxhx=H, VYheH
= xhx™* € H, YheH
— x € Ng(H).

Therefore, | Fix(¢)| = [Ne(H): H], and |S| =[G : H]. By our p-group Lemma,

|Fix(¢)| =5 |S| = [Ne(H): Hl =, [G: H]. O

4
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p-groups

Here is a picture of the action of the p-subgroup H on the set S = G/H, from the
proof of the Normalizer Lemma.

S = G/H = set of right cosets of H in G
T
|
o)
|
|
|
|
(o))
|
|
|
|
@
|
|
|
|
|
|
|
|
|
|
|
|
|

Ne(H)

The fixed points are precisely Orbits of size > 1 are of various sizes
the cosets in Ng(H) dividing |H|, but all lie outside Ng(H)
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p-subgroups

The following result will be useful in proving the first Sylow theorem.

The Normalizer lemma, Part 2

Suppose |G| = p"m, and H < G with |H| = p < p". Then H < Ng(H), and the

index [Ng(H) : H] is a multiple of p.

[G : H] cosets of H (a multiple of p)

H < NG(H) <G H | Hxx

Hxy,

Hy:

Hy,

Hys

[Ng(H) : H] > 1 cosets of H (a multiple of p)

Conclusions:

m H = Ng(H) is impossible!
m p' divides |Ng(H)|.
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Proof of the normalizer lemma

The Normalizer lemma, Part 2

Suppose |G| = p"m, and H < G with |H| = p’ < p". Then H < Ng(H), and the
index [N¢(H) : H] is a multiple of p.

Proof

Since H < Ng(H), we can create the quotient map
q: Ne(H) — Ne(H)/H, qg:g+— gH.

The size of the quotient group is [Ng(H): H], the number of cosets of H in Ng(H).

By The Normalizer lemma Part 1, [Ng(H): H] =, [G: H]. By Lagrange’s theorem,

|G| pnm n—i
Ne(H): H =, [G: Hl = +— = — = m=,0.
NG(H): H) = [6: H] = gy = P = p"'m =,

Therefore, [Nc(H): H] is a multiple of p, so Ng(H) must be strictly larger than H. O
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The Sylow theorems
The Sylow theorems are about one question:

What finite groups are there?

Early on, we saw five families of groups: cyclic, dihedral, abelian, symmetric,
alternating.

Later, we classified all (finitely generated) abelian groups.

But what other groups are there, and what do they look like? For example, for a
fixed order |G|, we may ask the following questions about G:

How big are its subgroups?
How are those subgroups related?

How many subgroups are there?

A w e

Are any of them normal?

There is no one general method to answer this for any given order.

However, the Sylow Theorems, developed by Norwegian mathematician Peter Sylow
(1832-1918), are powerful tools that help us attack this question.
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p-subgroups

Definition
A p-group is a group whose order is a power of a prime p. A p-group that is a
subgroup of a group G is a p-subgroup of G.

Notational convention

Througout, G will be a group of order |G| = p" - m, with p4 m. That is, p" is the
highest power of p dividing |G|.

There are three Sylow theorems, and loosely speaking, they describe the following
about a group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.
2. Relationship: All maximal p-subgroups are conjugate.

3. Number: There are strong restrictions on the number of p-subgroups a group
can have.

Together, these place strong restrictions on the structure of a group G with a fixed
order.
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Our unknown group of order 200

Throughout our two lectures on the Sylow theorems, we will have a running example,
a “mystery group” M of order 200.

|M| =200

Using only the fact that |[M| = 200, we will unconver as much about the structure of
M as we can.

We actually already know a little bit. Recall Cauchy’s theorem:

Cauchy's theorem
If p is a prime number dividing |G|, then G has an element g of order p. J
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Our mystery group of order 200

Since our mystery group M has order |M| = 2* - 5% = 200, Cauchy's theorem tells us
that:

m M has an element a of order 2;

m M has an element b of order 5;

Also, by Lagrange’s theorem, (a) N (b) = {e}.

|M| =200
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The 15¢ Sylow Theorem: Existence of p-subgroups

First Sylow Theorem

G has a subgroup of order p*, for each p* dividing |G|. Also, every p-subgroup with
fewer than p” elements sits inside one of the larger p-subgroups.

The First Sylow Theorem is in a sense, a generalization of Cauchy's theorem. Here is
a comparison:

Cauchy’s Theorem First Sylow Theorem

If p divides |G|, then ... If p¥ divides |G|, then ...
There is a subgroup of order p There is a subgroup of order pk
which is cyclic and has no non-trivial proper subgroups. which has subgroups of order 1, p, p2 . pk.
G contains an element of order p G might not contain an element of order pk.
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The 15¢ Sylow Theorem: Existence of p-subgroups

Proof
The trivial subgroup {e} has order p® = 1.

Big idea: Suppose we're given a subgroup H < G of order p' < p". We will construct

a subgroup H' of order p'**.

By the normalizer lemma, H < N¢(H), and the order of the quotient group
Nc(H)/H is a multiple of p.

By Cauchy’s Theorem, Ng(H)/H contains an element (a coset!) of order p. Call this
element aH. Note that (aH) is cyclic of order p.

Claim: The preimage of (aH) under the quotient q: Ng(H) — Ng(H)/H is the
subgroup H’ we seek.

The preimages q~*(H), q‘l(aH), g Y(a’H), ..., g *(a""*H) are all distinct cosets
of H in Ng(H), each of size p'.

Thus, the preimage H' = g~ '((aH)) contains p - |[H| = p'*! elements. O

v
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The 15¢ Sylow Theorem: Existence of p-subgroups

Here is a picture of how we found the group H' = g~ *((aH)).

q

p—1
Since |H| = p', the subgroup H' = U a"H contains p - |H| = p'** elements.
k=0
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Our unknown group of order 200
We now know a little bit more about the structure of our mystery group of order

M| = 2. 5%

m M has a 2-subgroup P, of order 2° = §;
m M has a 5-subgroup Ps of order 25 = 5%;

m Each of these subgroups contains a nested chain of p-subgroups, down to the
trivial group, {e}.

|M| =200

M. Macauley (Clemson) Section 5: Groups acting on sets Math 4120, Modern Algebra 41 / 56


mailto:macaule@clemson.edu

The 2" Sylow Theorem: Relationship among p-subgroups

Definition
A subgroup H < G of order p", where |G| = p" - m with pt m is called a Sylow
p-subgroup of G. Let Syl (G) denote the set of Sylow p-subgroups of G.

Second Sylow Theorem

Any two Sylow p-subgroups are conjugate (and hence isomorphic).

Proof

Let H < G be any Sylow p-subgroup of G, and let S = G/H = {Hg | g € G}, the
set of right cosets of H.

Pick any other Sylow p-subgroup K of G. (If there is none, the result is trivial.)

The group K acts on S by right-multiplication, via ¢: K — Perm(S), where

¢(k) = the permutation sending each Hg to Hgk.
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The 2" Sylow Theorem: All Sylow p-subgroups are conjugate

Proof
A fixed point of ¢ is a coset Hg € S such that

Hgk = Hg, Vke K

IR

Thus, if ¢ has a fixed point Hg, then H and K are conjugate by g, and we're done!

All we need to do is show that | Fix(¢)| #, 0.

Hgkg ™' =H,

gkg ' € H,
gKg ' C H

gKkg ' =H.

Vk e K
Vk € K

By the p-group Lemma, |Fix(¢)| =, |S|. Recall that |S| =[G, H].

Since H is a Sylow p-subgroup, |H| = p". By Lagrange's Theorem,

(6] _ p'm

S|=[G: H] = =
S1=16: H] = {1 = 2

Therefore, | Fix(¢)| =p m %, 0.

m, ptm.
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Our unknown group of order 200
We now know even more about the structure of our mystery group M, of order

M| = 2. 5%

m If M has any other Sylow 2-subgroup, it is isomorphic to P»;
m If M has any other Sylow 5-subgroup, it is isomorphic to Ps.

|M| =200

If any other Sylow

2-subgroup exists,

it is isomorphic to
the first
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The 3' Sylow Theorem: Number of p-subgroups

Third Sylow Theorem
Let n, be the number of Sylow p-subgroups of G. Then

np divides |G| and np=p1.

(Note that together, these imply that n, | m, where |G| = p" - m.)

Proof
The group G acts on S = Syl (G) by conjugation, via ¢: G — Perm(S), where

¢(g) — the permutation sending each H to g~ 'Hg.

By the Second Sylow Theorem, all Sylow p-subgroups are conjugate! Thus there is
only one orbit, Orb(H), of size n, = |S]|.

By the Orbit-Stabilizer Theorem,
| Orb(H)| -| Stab(H)| = |G| = np divides |G| .
N—_——

=np

4

M. Macauley (Clemson) Section 5: Groups acting on sets Math 4120, Modern Algebra 45 / 56



mailto:macaule@clemson.edu

The 3' Sylow Theorem: Number of p-subgroups

Proof (cont.)

Now, pick any H € Syl (G) = S. The group H acts on S by conjugation, via
0: H — Perm(S), where

9(/7) = the permutation sending each K to h™'Kh.
Let K € Fix(6). Then K < G is a Sylow p-subgroup satisfying
h'Kh=K, YheH <<= H<NK)<G.

We know that:
m H and K are Sylow p-subgroups of G, but also of Ng(K).
m Thus, H and K are conjugate in Ng(K). (2nd Sylow Thm.)
m K < Ng(K), thus the only conjugate of K in Ng(K) is itself.

Thus, K = H. That is, Fix(d) = {H} contains only 1 element.

By the p-group Lemma, n, := |S| =, | Fix(0)| = 1.
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Summary of the proofs of the Sylow Theorems

For the 1st Sylow Theorem, we started with H = {e}, and inductively created larger
subgroups of size p, p%,...,p".

For the 2" and 3™ Sylow Theorems, we used a clever group action and then applied
one or both of the following:

(i) Orbit-Stabilizer Theorem. If G acts on S, then | Orb(s)|-| Stab(s)| = |G|.
(ii) p-group Lemma. If a p-group acts on S, then |S| =, | Fix(¢)].

To summarize, we used:

S2 The action of K € Syl (G) on S = G/H by right multiplication for some other
H € Syl,(G).
S3a The action of G on S = Syl (G), by conjugation.
S3b The action of H € Syl,(G) on § = Syl (G), by conjugation.
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Our unknown group of order 200

We now know a little bit more about the structure of our mystery group M, of order
M| = 2* .52 = 200:

m ns | 8, thus ns € {1,2,4,8}. But ns =51, so ns = 1.
m |25 and is odd. Thus n € {1,5,25}.

m We conclude that M has a unique (and hence normal) Sylow 5-subgroup Ps (of
order 5% = 25), and either 1, 5, or 25 Sylow 2-subgroups (of order 2* = 8).

The only Sylow
5-subgroup is normal

There may be other
Sylow 2-subgroups
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Our unknown group of order 200

The only Sylow
5-subgroup is normal

|M| =200

There may be other
Sylow 2-subgroups

Suppose M has a subgroup isomorphic to Ds.

This would be a Sylow 2-subgroup. Since all of them are conjugate, M cannot
contain a subgroup isomorphic to Qs, Cs x G, or Gg!

In particular, M cannot even contain an element of order 8. (Why?)
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Simple groups and the Sylow theorems

Definition J

A group G is simple if its only normal subgroups are G and (e).

Since all Sylow p-subgroups are conjugate, the following result is straightforward:

Proposition (HW)

A Sylow p-subgroup is normal in G if and only if it is the unique Sylow p-subgroup
(that is, if n, = 1).

The Sylow theorems are very useful for establishing statements like:
There are no simple groups of order k (for some k).

To do this, we usually just need to show that n, = 1 for some p dividing |G]|.

Since we established ns = 1 for our running example of a group of size
M| = 200 = 2% - 52, there are no simple groups of order 200.
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An easy example
Tip
When trying to show that n, = 1, it's usually more helpful to analyze the largest
primes first.

Proposition

There are no simple groups of order 84.

Proof

Since |G| = 84 = 22 .3 .7, the Third Sylow Theorem tells us:
m n; divides 2% -3 =12 (so n7 € {1,2,3,4,6,12})
mny =7 1.

The only possibility is that n; = 1, so the Sylow 7-subgroup must be normal.

Observe why it is beneficial to use the largest prime first:
m n; divides 2° -7 =28 and n3 =3 1. Thus n3 € {1,2,4,7,14,28}.
m n, divides 3-7 =21 and n, =, 1. Thus n» € {1,3,7,21}.
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A harder example

Proposition

There are no simple groups of order 351.

Proof

Since |G| = 351 = 3% .13, the Third Sylow Theorem tells us:
m ny3 divides 3° = 27 (so m3 € {1,3,9,27})
B nm3 =33 1.

The only possibilies are ni3 = 1 or 27.

A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order 3% = 27.
Therefore, PN Q = {e}.

Suppose ni3 = 27. Every Sylow 13-subgroup contains 12 non-identity elements, and
so G must contain 27 - 12 = 324 elements of order 13.

This leaves 351 — 324 = 27 elements in G not of order 13. Thus, G contains only

one Sylow 3-subgroup (i.e., n3 = 1) and so G cannot be simple. |

y
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The hardest example

Proposition
If H< G and |G| does not divide [G : H]!, then G cannot be simple.

Proof
Let G act on the right cosets of H (i.e., S = G/H) by right-multiplication:

¢: G— Perm(S) =5, ¢(g) = the permutation that sends each Hx to Hxg.

Recall that the kernel of ¢ is the intersection of all conjugate subgroups of H:

Ker ¢ = ﬂ x " Hx.

x€eG
Notice that (e) < Ker¢ < H < G, and Ker¢ <1 G.
If Ker ¢ = (e) then ¢: G < S, is an embedding. But this is impossible because |G|

does not divide |S,| = [G : H]!. O

v

Corollary

There are no simple groups of order 24.

v
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Theorem (classification of finite simple groups)
Every finite simple group is isomorphic to one of the following groups:
m A cyclic group Z,, with p prime;
m An alternating group A,, with n > 5;
m A Lie-type Chevalley group: PSL(n, q), PSU(n, q), PsP(2n, p), and PQ(n, q);

m A Lie-type group (twisted Chevalley group or the Tits group): Di(q), Es(q).
E7(q). Es(q). Fa(a), *Fa(2")', Ga(q), 2G2(3"), *B(2");
m One of 26 exceptional “sporadic groups.”

The two largest sporadic groups are the:

m “baby monster group” B, which has order
|B] =2*.3%.5°.77.11.13.17-19-23 - 31 - 47 ~ 4.15 x 10%;
m “monster group” M, which has order
M| =2%.3%.5%.7°.11°.13% . 17.19.23.29-31.41-47-59 - 71 ~ 8.08 x 10>°.

The proof of this classification theorem is spread across =~ 15,000 pages in =~ 500
journal articles by over 100 authors, published between 1955 and 2004.
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Finite Simple Group (of Order Two), by The Klein Four™

Musical Fruitcake View More by This Artist

Klein Four

Open iTunes to preview, buy, and download music.

Name Artist Time Price
1 Power of One Klein Four 5:16 $0.99 View In iTunes »
2 Finite Simple Group (of Order Two) Klein Four 3:00 $0.99 View In iTunes »
3 Three-Body Problem Klein Four 3:17  $0.99 View In iTunes »
4 Just the Four of Us Klein Four 4:19 $0.99 View In iTunes »
5 Lemma Klein Four 3:43 $0.99 View In iTunes »
6 Calculating Klein Four 4:09 $0.99 View In iTunes »
7 XX Potential Klein Four 3:42 $0.99 View In iTunes »
$9.99
8 Confuse Me Klein Four 3:41 $0.99 View In iTunes »
Genres: Pop, Music
Released: Dec 05, 2005 9  Universal Klein Four 4:13  $0.99 View In iTunes »
® 2005 Klein Four
10 Contradiction Klein Four 3:48 $0.99 View In iTunes »
Customer Ratings 11 Mathematics Paradise Klein Four 3:51 $0.99 View In iTunes »
* % %% 13 Ratings 12 Stefanie (The Ballad of Galois) Klein Four 4:51 $0.99 View In iTunes »
13 Musical Fruitcake (Pass it Around) Klein Four 2:50 $0.99 View In iTunes »
14 Abandon Soap Klein Four 2:17 $0.99 View In iTunes »
14 Songs
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