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Overview

Intuitively, a group action occurs when a group G “naturally permutes” a set S of
states.

For example:

The “Rubik’s cube group” consists of the 4.3× 1019 actions that permutated
the 4.3× 1019 configurations of the cube.

The group D4 consists of the 8 symmetries of the square. These symmetries are
actions that permuted the 8 configurations of the square.

Group actions help us understand the interplay between the actual group of actions
and sets of objects that they “rearrange.”

There are many other examples of groups that “act on” sets of objects. We will see
examples when the group and the set have different sizes.

There is a rich theory of group actions, and it can be used to prove many deep
results in group theory.
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Actions vs. configurations

The group D4 can be thought of as the 8 symmetries of the square:
1 2
4 3

There is a subtle but important distinction to make, between the actual 8 symmetries
of the square, and the 8 configurations.

For example, the 8 symmetries (alternatively, “actions”) can be thought of as

e, r , r 2, r 3, f , rf , r 2f , r 3f .

The 8 configurations (or states) of the square are the following:

1 2
4 3

4 1
3 2

3 4
2 1

2 3
1 4

2 1
3 4

3 2
4 1

4 3
1 2

1 4
2 3

When we were just learning about groups, we made an action diagram.

The vertices correspond to the states.

The edges correspond to generators.

The paths corresponded to actions (group elements).
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Actions diagrams

Here is the action diagram of the group D4 = 〈r , f 〉:

1 2
4 3

4 1
3 2

3 4
2 1

2 3
1 4

2 1
3 4

3 2
4 1

4 3
1 2

1 4
2 3

In the beginning of this course, we picked a configuration to be the “solved state,”
and this gave us a bijection between configurations and actions (group elements).

The resulting diagram was a Cayley diagram. In this section, we’ll skip this step.
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Actions diagrams

In all of the examples we saw in the beginning of the course, we had a bijective
correspondence between actions and states. This need not always happen!

Suppose we have a size-7 set consisting of the following “binary squares.”

S =

{ }
, , , , , ,

0 0
0 0

0 1
1 0

1 0
0 1

1 1
0 0

0 1
0 1

0 0
1 1

1 0
1 0

The group D4 = 〈r , f 〉 “acts on S” as follows:

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

The action diagram above has some properties of Cayley diagrams, but there are
some fundamental differences as well.
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A “group switchboard”

Suppose we have a “switchboard” for G , with every element g ∈ G having a
“button.”

If a ∈ G , then pressing the a-button rearranges the objects in our set S . In fact, it is
a permutation of S ; call it φ(a).

If b ∈ G , then pressing the b-button rearranges the objects in S a different way. Call
this permutation φ(b).

The element ab ∈ G also has a button. We require that pressing the ab-button yields
the same result as pressing the a-button, followed by the b-button. That is,

φ(ab) = φ(a)φ(b) , for all a, b ∈ G .

Let Perm(S) be the group of permutations of S . Thus, if |S | = n, then
Perm(S) ∼= Sn. (We typically think of Sn as the permutations of {1, 2, . . . , n}.)

Definition

A group G acts on a set S if there is a homomorphism φ : G → Perm(S).
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A “group switchboard”

Returning to our binary square example, pressing the r -button and f -button
permutes the set S as follows:

φ(r) : 0 0
0 0

0 1
1 0

1 0
0 1

1 1
0 0

0 1
0 1

0 0
1 1

1 0
1 0

φ(f ) : 0 0
0 0

0 1
1 0

1 0
0 1

1 1
0 0

0 1
0 1

0 0
1 1

1 0
1 0

Observe how these permutations are encoded in the action diagram:

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0
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Left actions vs. right actions (an annoyance we can deal with)

As we’ve defined group actions, “pressing the a-button followed by the b-button
should be the same as pressing the ab-button.”

However, sometimes it has to be the same as “pressing the ba-button.”

This is best seen by an example. Suppose our action is conjugation:

H aHa−1 baHa−1b−1

conjugate
by a

conjugate
by b

conjugate by ba

φ(a)φ(b) = φ(ba)

“Left group action”

H a−1Ha b−1a−1Hab

conjugate
by a

conjugate
by b

conjugate by ab

φ(a)φ(b) = φ(ab)

“Right group action”

Some books forgo our “φ-notation” and use the following notation to distinguish left
vs. right group actions:

g .(h.s) = (gh).s , (s.g).h = s.(gh) .

We’ll usually keep the φ, and write φ(g)φ(h)s = φ(gh)s and s.φ(g)φ(h) = s.φ(gh).
As with groups, the “dot” will be optional.
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Left actions vs. right actions (an annoyance we can deal with)

Alternative definition (other textbooks)

A right group action is a mapping

G × S −→ S , (a, s) 7−→ s.a

such that

s.(ab) = (s.a).b, for all a, b ∈ G and s ∈ S

s.e = s, for all s ∈ S .

A left group action can be defined similarly.

Pretty much all of the theorems for left actions hold for right actions.

Usually if there is a left action, there is a related right action. We will usually use
right actions, and we will write

s.φ(g)

for “the element of S that the permutation φ(g) sends s to,” i.e., where pressing the
g -button sends s.

If we have a left action, we’ll write φ(g).s.
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Cayley diagrams as action diagrams

Every Cayley diagram can be thought of as the action diagram of a particular (right)
group action.

For example, consider the group G = D4 = 〈r , f 〉 acting on itself. That is,
S = D4 = {e, r , r 2, r 3, f , rf , r 2f , r 3f }.

Suppose that pressing the g -button on our “group switchboard” multiplies every
element on the right by g .

Here is the action diagram:

e r

r2r3

f

r3f r2f

rf

We say that “G acts on itself by right-multiplication.”
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Orbits, stabilizers, and fixed points

Suppose G acts on a set S . Pick a configuration s ∈ S . We can ask two questions
about it:

(i) What other states (in S) are reachable from s? (We call this the orbit of s.)

(ii) What group elements (in G) fix s? (We call this the stabilizer of s.)

Definition

Suppose that G acts on a set S (on the right) via φ : G → S .

(i) The orbit of s ∈ S is the set

Orb(s) = {s.φ(g) | g ∈ G} .

(ii) The stabilizer of s in G is

Stab(s) = {g ∈ G | s.φ(g) = s} .

(iii) The fixed points of the action are the orbits of size 1:

Fix(φ) = {s ∈ S | s.φ(g) = s for all g ∈ G} .

Note that the orbits of φ are the connected components in the action diagram.
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Orbits, stabilizers, and fixed points

Let’s revisit our running example:

0 0
0 0

0 1
1 0

1 0
0 1

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

The orbits are the 3 connected components. There is only one fixed point of φ. The
stabilizers are:

Stab
( )

= D4,0 0
0 0

Stab
( )

= {e, r 2, rf , r 3f },0 1
1 0

Stab
( )

= {e, r 2, rf , r 3f },1 0
0 1

Stab
( )

= {e, f },0 0
1 1

Stab
( )

= {e, r 2f },1 0
1 0

Stab
( )

= {e, f },1 1
0 0

Stab
( )

= {e, r 2f }.0 1
0 1

Observations?
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Orbits and stabilizers

Proposition

For any s ∈ S , the set Stab(s) is a subgroup of G .

Proof (outline)

To show Stab(s) is a group, we need to show three things:

(i) Contains the identity. That is, s.φ(e) = s.

(ii) Inverses exist. That is, if s.φ(g) = s, then s.φ(g−1) = s.

(iii) Closure. That is, if s.φ(g) = s and s.φ(h) = s, then s.φ(gh) = s.

You’ll do this on the homework.

Remark

The kernel of the action φ is the set of all group elements that fix everything in S :

Ker φ = {g ∈ G | φ(g) = e} = {g ∈ G | s.φ(g) = s for all s ∈ S} .

Notice that
Ker φ =

⋂
s∈S

Stab(s) .
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The Orbit-Stabilizer Theorem

The following result is another one of the central results of group theory.

Orbit-Stabilizer theorem

For any group action φ : G → Perm(S), and any s ∈ S ,

|Orb(s)| · |Stab(s)| = |G | .

Proof

Since Stab(s) < G , Lagrange’s theorem tells us that

[G : Stab(s)]︸ ︷︷ ︸
number of cosets

· |Stab(s)|︸ ︷︷ ︸
size of subgroup

= |G |.

Thus, it suffices to show that |Orb(s)| = [G : Stab(s)].

Goal: Exhibit a bijection between elements of Orb(s), and right cosets of Stab(s).

That is, two elements in G send s to the same place iff they’re in the same coset.
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The Orbit-Stabilizer Theorem: |Orb(s)| · | Stab(s)| = |G |

Proof (cont.)

Let’s look at our previous example to get some intuition for why this should be true.

We are seeking a bijection between Orb(s), and the right cosets of Stab(s).

That is, two elements in G send s to the same place iff they’re in the same coset.

Let s =

Then Stab(s) = 〈f 〉.

0 0
1 1

e

f

r

fr

r2

fr2

r3

fr3

H Hr Hr2 Hr3

G = D4 and H = 〈f 〉

Partition of D4 by the
right cosets of H :

0 0
1 1

0 1
0 1

1 0
1 0

1 1
0 0

Note that s.φ(g) = s.φ(k) iff g and k are in the same right coset of H in G .
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The Orbit-Stabilizer Theorem: |Orb(s)| · | Stab(s)| = |G |
Proof (cont.)

Throughout, let H = Stab(s).

“⇒” If two elements send s to the same place, then they are in the same coset.

Suppose g , k ∈ G both send s to the same element of S . This means:

s.φ(g) = s.φ(k) =⇒ s.φ(g)φ(k)−1 = s
=⇒ s.φ(g)φ(k−1) = s
=⇒ s.φ(gk−1) = s (i.e., gk−1 stabilizes s)
=⇒ gk−1 ∈ H (recall that H = Stab(s))
=⇒ Hgk−1 = H
=⇒ Hg = Hk

“⇐” If two elements are in the same coset, then they send s to the same place.

Take two elements g , k ∈ G in the same right coset of H. This means Hg = Hk.

This is the last line of the proof of the forward direction, above. We can change each
=⇒ into ⇐⇒, and thus conclude that s.φ(g) = s.φ(k). �

If we have instead, a left group action, the proof carries through but using left cosets.
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Groups acting on elements, subgroups, and cosets

It is frequently of interest to analyze the action of a group G on its elements,
subgroups, or cosets of some fixed H ≤ G .

Sometimes, the orbits and stabilizers of these actions are actually familiar algebraic
objects.

Also, sometimes a deep theorem has a slick proof via a clever group action.

For example, we will see how Cayley’s theorem (every group G is isomorphic to a
group of permutations) follows immediately once we look at the correct action.

Here are common examples of group actions:

G acts on itself by right-multiplication (or left-multiplication).

G acts on itself by conjugation.

G acts on its subgroups by conjugation.

G acts on the right-cosets of a fixed subgroup H ≤ G by right-multiplication.

For each of these, we’ll analyze the orbits, stabilizers, and fixed points.
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Groups acting on themselves by right-multiplication

We’ve seen how groups act on themselves by right-multiplication. While this action
is boring (any Cayley diagram is an action diagram!), it leads to a slick proof of
Cayley’s theorem.

Cayley’s theorem

If |G | = n, then there is an embedding G ↪→ Sn.

Proof.

The group G acts on itself (that is, S = G) by right-multiplication:

φ : G −→ Perm(S) ∼= Sn , φ(g) = the permutation that sends each x 7→ xg .

There is only one orbit: G = S . The stabilizer of any x ∈ G is just the identity
element:

Stab(x) = {g ∈ G | xg = x} = {e} .

Therefore, the kernel of this action is Ker φ =
⋂
x∈G

Stab(x) = {e}.

Since Ker φ = {e}, the homomorphism φ is an embedding. �
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Groups acting on themselves by conjugation

Another way a group G can act on itself (that is, S = G) is by conjugation:

φ : G −→ Perm(S) , φ(g) = the permutation that sends each x 7→ g−1xg .

The orbit of x ∈ G is its conjugacy class:

Orb(x) = {x .φ(g) | g ∈ G} = {g−1xg | g ∈ G} = clG (x) .

The stabilizer of x is the set of elements that commute with x ; called its
centralizer:

Stab(x) = {g ∈ G | g−1xg = x} = {g ∈ G | xg = gx} := CG (x)

The fixed points of φ are precisely those in the center of G :

Fix(φ) = {x ∈ G | g−1xg = x for all g ∈ G} = Z(G) .

By the Orbit-Stabilizer theorem, |G | = |Orb(x)| · |Stab(x)| = | clG (x)| · |CG (x)|.
Thus, we immediately get the following new result about conjugacy classes:

Theorem

For any x ∈ G , the size of the conjugacy class clG (x) divides the size of G .
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Groups acting on themselves by conjugation
As an example, consider the action of G = D6 on itself by conjugation.

The orbits of the action are the
conjugacy classes:

e

r3

r

r5

r2

r4

f

rf

r2f

r3f

r4f

r5f

The fixed points of φ are the size-1 conjugacy classes. These are the elements in the
center: Z(D6) = {e} ∪ {r 3} = 〈r 3〉.

By the Orbit-Stabilizer theorem:

| Stab(x)| =
|D6|
|Orb(x)| =

12

| clG (x)| .

The stabilizer subgroups are as follows:

Stab(e) = Stab(r 3) = D6,

Stab(r) = Stab(r 2) = Stab(r 4) = Stab(r 5) = 〈r〉 = C6,

Stab(f ) = {e, r 3, f , r 3f } = 〈r 3, f 〉,
Stab(rf ) = {e, r 3, rf , r 4f } = 〈r 3, rf 〉,
Stab(r i f ) = {e, r 3, r i f , r i f } = 〈r 3, r i f 〉.
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Groups acting on subgroups by conjugation
Let G = D3, and let S be the set of proper subgroups of G :

S =
{
〈e〉, 〈r〉, 〈f 〉, 〈rf 〉, 〈r 2f 〉

}
.

There is a right group action of D3 = 〈r , f 〉 on S by conjugation:

τ : D3 −→ Perm(S) , τ(g) = the permutation that sends each H to g−1Hg .

τ(e) = 〈e〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉

τ(r) = 〈e〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉

τ(r2) = 〈e〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉

τ(f ) = 〈e〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉

τ(rf ) = 〈e〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉

τ(r2f ) = 〈e〉 〈r〉 〈f 〉 〈rf 〉 〈r2f 〉

〈e〉

〈r〉 〈r2f 〉 〈rf 〉

〈f 〉

The action diagram.

Stab(〈e〉) = Stab(〈r〉) = D3 = ND3 (〈r〉)
Stab(〈f 〉) = 〈f 〉 = ND3 (〈f 〉),

Stab(〈rf 〉) = 〈rf 〉 = ND3 (〈rf 〉),

Stab(〈r 2f 〉) = 〈r 2f 〉 = ND3 (〈r 2f 〉).
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Groups acting on subgroups by conjugation

More generally, any group G acts on its set S of subgroups by conjugation:

φ : G −→ Perm(S) , φ(g) = the permutation that sends each H to g−1Hg .

This is a right action, but there is an associated left action: H 7→ gHg−1.

Let H ≤ G be an element of S .

The orbit of H consists of all conjugate subgroups:

Orb(H) = {g−1Hg | g ∈ G} .

The stabilizer of H is the normalizer of H in G :

Stab(H) = {g ∈ G | g−1Hg = H} = NG (H) .

The fixed points of φ are precisely the normal subgroups of G :

Fix(φ) = {H ≤ G | g−1Hg = H for all g ∈ G} .

The kernel of this action is G iff every subgroup of G is normal. In this case, φ
is the trivial homomorphism: pressing the g -button fixes (i.e., normalizes) every
subgroup.
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Groups acting on cosets of H by right-multiplication
Fix a subgroup H ≤ G . Then G acts on its right cosets by right-multiplication:

φ : G −→ Perm(S) , φ(g) = the permutation that sends each Hx to Hxg .

Let Hx be an element of S = G/H (the right cosets of H).

There is only one orbit. For example, given two cosets Hx and Hy ,

φ(x−1y) sends Hx 7−→ Hx(x−1y) = Hy .

The stabilizer of Hx is the conjugate subgroup x−1Hx :

Stab(Hx) = {g ∈ G | Hxg = Hx} = {g ∈ G | Hxgx−1 = H} = x−1Hx .

Assuming H 6= G , there are no fixed points of φ. The only orbit has size
[G : H] > 1.

The kernel of this action is the intersection of all conjugate subgroups of H:

Ker φ =
⋂
x∈G

x−1Hx

Notice that 〈e〉 ≤ Ker φ ≤ H, and Ker φ = H iff H C G .
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Fixed points of group actions

Recall the subtle difference between fixed points and stabilizers:

The fixed points of an action φ : G → Perm(S) are the elements of S fixed by
every g ∈ G .

The stabilizer of an element s ∈ S is the set of elements of G that fix s.

Lemma

If a group G of prime order p acts on a set S via φ : G → Perm(S), then

|Fix(φ)| ≡ |S | (mod p) .

Proof (sketch)

By the Orbit-Stabilizer theorem, all
orbits have size 1 or p.

I’ll let you fill in the details.

Fix(φ) non-fixed points all in size-p orbits

p elts

p elts

p elts

p elts

p elts
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Cauchy’s Theorem

Cauchy’s theorem

If p is a prime number dividing |G |, then G has an element g of order p.

Proof

Let P be the set of ordered p-tuples of elements from G whose product is e, i.e.,

(x1, x2, . . . , xp) ∈ P iff x1x2 · · · xp = e .

Observe that |P| = |G |p−1. (We can choose x1, . . . , xp−1 freely; then xp is forced.)

The group Zp acts on P by cyclic shift:

φ : Zp −→ Perm(P), (x1, x2, . . . , xp)
φ(1)7−→ (x2, x3 . . . , xp, x1) .

(This is because if x1x2 · · · xp = e, then x2x3 · · · xpx1 = e as well.)

The elements of P are partitioned into orbits. By the orbit-stabilizer theorem,
|Orb(s)| = [Zp : Stab(s)], which divides |Zp| = p. Thus, |Orb(s)| = 1 or p.

Observe that the only way that an orbit of (x1, x2, . . . , xp) could have size 1 is if
x1 = x2 = · · · = xp.
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Cauchy’s Theorem

Proof (cont.)

Clearly, (e, e, . . . , e) ∈ P, and the orbit containing it has size 1.

Excluding (e, . . . , e), there are |G |p−1 − 1 other elements in P, and these are
partitioned into orbits of size 1 or p.

Since p - |G |p−1 − 1, there must be some other orbit of size 1.

Thus, there is some (x , x , . . . , x) ∈ P, with x 6= e such that xp = e. �

Corollary

If p is a prime number dividing |G |, then G has a subgroup of order p.

Note that just by using the theory of group actions, and the orbit-stabilzer theorem,
we have already proven:

Cayley’s theorem: Every group G is isomorphic to a group of permutations.

The size of a conjugacy class divides the size of G .

Cauchy’s theorem: If p divides |G |, then G has an element of order p.
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Classification of groups of order 6

By Cauchy’s theorem, every group of order 6 must have an element a of order 2, and
an element b of order 3.

Clearly, G = 〈a, b〉 for two such elements. Thus, G must have a Cayley diagram that
looks like the following:

a

e

ab

b

ab2

b2

It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

C6
∼= C2 × C3

a

e

ab

b

ab2

b2

D3

a

e

ab

b

ab2

b2
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p-groups and the Sylow theorems

Definition

A p-group is a group whose order is a power of a prime p. A p-group that is a
subgroup of a group G is a p-subgroup of G .

Notational convention

Throughout, G will be a group of order |G | = pn ·m, with p - m. That is, pn is the
highest power of p dividing |G |.

There are three Sylow theorems, and loosely speaking, they describe the following
about a group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.

2. Relationship: All maximal p-subgroups are conjugate.

3. Number: There are strong restrictions on the number of p-subgroups a group
can have.

Together, these place strong restrictions on the structure of a group G with a fixed
order.
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p-groups

Before we introduce the Sylow theorems, we need to better understand p-groups.

Recall that a p-group is any group of order pn. For example, C1, C4, V4, D4 and Q8

are all 2-groups.

p-group Lemma

If a p-group G acts on a set S via φ : G → Perm(S), then

|Fix(φ)| ≡p |S | .

Proof (sketch)

Suppose |G | = pn.

By the Orbit-Stabilizer theorem, the
only possible orbit sizes are
1, p, p2, . . . , pn.

Fix(φ) non-fixed points all in size-pk orbits

p elts

···
p3 elts

···
pi elts

p elts

··
·
p6 elts
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p-groups

Normalizer lemma, Part 1

If H is a p-subgroup of G , then

[NG (H) : H] ≡p [G : H] .

Proof

Let S = G/H = {Hx | x ∈ G}. The group H acts on S by right-multiplication, via
φ : H → Perm(S), where

φ(h) = the permutation sending each Hx to Hxh.

The fixed points of φ are the cosets Hx in the normalizer NG (H):

Hxh = Hx , ∀h ∈ H ⇐⇒ Hxhx−1 = H, ∀h ∈ H
⇐⇒ xhx−1 ∈ H, ∀h ∈ H
⇐⇒ x ∈ NG (H) .

Therefore, |Fix(φ)| = [NG (H) : H], and |S | = [G : H]. By our p-group Lemma,

|Fix(φ)| ≡p |S | =⇒ [NG (H) : H] ≡p [G : H] . �
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p-groups

Here is a picture of the action of the p-subgroup H on the set S = G/H, from the
proof of the Normalizer Lemma.

NG (H)

S = G/H = set of right cosets of H in G

The fixed points are precisely
the cosets in NG (H)

Orbits of size > 1 are of various sizes
dividing |H|, but all lie outside NG (H)

H

Ha1

Ha2

Ha3

Hg1

Hg2Hg3

Hg7

Hg8

Hg9

Hg10

Hg11Hg12

Hg13

Hg14

Hg1

Hg4

Hg5Hg6
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p-subgroups

The following result will be useful in proving the first Sylow theorem.

The Normalizer lemma, Part 2

Suppose |G | = pnm, and H ≤ G with |H| = pi < pn. Then H � NG (H), and the
index [NG (H) : H] is a multiple of p.

H Hx2 Hxk Hy1

Hy2

Hy3

...

. . .

[NG (H) : H] > 1 cosets of H (a multiple of p)

[G : H] cosets of H (a multiple of p)

H � NG (H) ≤ G

Conclusions:

H = NG (H) is impossible!

pi+1 divides |NG (H)|.
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Proof of the normalizer lemma

The Normalizer lemma, Part 2

Suppose |G | = pnm, and H ≤ G with |H| = pi < pn. Then H � NG (H), and the
index [NG (H) : H] is a multiple of p.

Proof

Since H C NG (H), we can create the quotient map

q : NG (H) −→ NG (H)/H , q : g 7−→ gH .

The size of the quotient group is [NG (H) : H], the number of cosets of H in NG (H).

By The Normalizer lemma Part 1, [NG (H) : H] ≡p [G : H]. By Lagrange’s theorem,

[NG (H) : H] ≡p [G : H] =
|G |
|H| =

pnm

pi
= pn−im ≡p 0 .

Therefore, [NG (H) : H] is a multiple of p, so NG (H) must be strictly larger than H. �
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The Sylow theorems

The Sylow theorems are about one question:

What finite groups are there?

Early on, we saw five families of groups: cyclic, dihedral, abelian, symmetric,
alternating.

Later, we classified all (finitely generated) abelian groups.

But what other groups are there, and what do they look like? For example, for a
fixed order |G |, we may ask the following questions about G :

1. How big are its subgroups?

2. How are those subgroups related?

3. How many subgroups are there?

4. Are any of them normal?

There is no one general method to answer this for any given order.

However, the Sylow Theorems, developed by Norwegian mathematician Peter Sylow
(1832–1918), are powerful tools that help us attack this question.
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p-subgroups

Definition

A p-group is a group whose order is a power of a prime p. A p-group that is a
subgroup of a group G is a p-subgroup of G .

Notational convention

Througout, G will be a group of order |G | = pn ·m, with p - m. That is, pn is the
highest power of p dividing |G |.

There are three Sylow theorems, and loosely speaking, they describe the following
about a group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.

2. Relationship: All maximal p-subgroups are conjugate.

3. Number: There are strong restrictions on the number of p-subgroups a group
can have.

Together, these place strong restrictions on the structure of a group G with a fixed
order.
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Our unknown group of order 200

Throughout our two lectures on the Sylow theorems, we will have a running example,
a “mystery group” M of order 200.

•
e

??

?

?

?
?

?

?

?

?

?
?

|M|=200

Using only the fact that |M| = 200, we will unconver as much about the structure of
M as we can.

We actually already know a little bit. Recall Cauchy’s theorem:

Cauchy’s theorem

If p is a prime number dividing |G |, then G has an element g of order p.
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Our mystery group of order 200

Since our mystery group M has order |M| = 23 · 52 = 200, Cauchy’s theorem tells us
that:

M has an element a of order 2;

M has an element b of order 5;

Also, by Lagrange’s theorem, 〈a〉 ∩ 〈b〉 = {e}.

?

?

?

e

?

?

?

?

?

?

?

|M|=200

•

•b
•b2

•
b3

•
b4

•a
|a|= 2

|b|= 5
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The 1st Sylow Theorem: Existence of p-subgroups

First Sylow Theorem

G has a subgroup of order pk , for each pk dividing |G |. Also, every p-subgroup with
fewer than pn elements sits inside one of the larger p-subgroups.

The First Sylow Theorem is in a sense, a generalization of Cauchy’s theorem. Here is
a comparison:

Cauchy’s Theorem First Sylow Theorem

If p divides |G |, then . . . If pk divides |G |, then . . .

There is a subgroup of order p There is a subgroup of order pk

which is cyclic and has no non-trivial proper subgroups. which has subgroups of order 1, p, p2 . . . pk .

G contains an element of order p G might not contain an element of order pk .
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The 1st Sylow Theorem: Existence of p-subgroups

Proof

The trivial subgroup {e} has order p0 = 1.

Big idea: Suppose we’re given a subgroup H < G of order pi < pn. We will construct

a subgroup H ′ of order pi+1.

By the normalizer lemma, H � NG (H), and the order of the quotient group
NG (H)/H is a multiple of p.

By Cauchy’s Theorem, NG (H)/H contains an element (a coset!) of order p. Call this
element aH. Note that 〈aH〉 is cyclic of order p.

Claim: The preimage of 〈aH〉 under the quotient q : NG (H)→ NG (H)/H is the
subgroup H ′ we seek.

The preimages q−1(H), q−1(aH), q−1(a2H), . . . , q−1(ap−1H) are all distinct cosets
of H in NG (H), each of size pi .

Thus, the preimage H ′ = q−1(〈aH〉) contains p · |H| = pi+1 elements. �
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The 1st Sylow Theorem: Existence of p-subgroups

Here is a picture of how we found the group H ′ = q−1(〈aH〉).

NG (H)

g1H

g2H

g3H

g4H

· ·
·

H

aH

a2Ha3H

•

•

•

q

H′

NG (H)

H

•g1

•g2

•g3

•g4

· ·
·

•

H
•

aH

•
a2H

•
a3H

··
·

〈aH〉

q−1

Since |H| = pi , the subgroup H ′ =

p−1⋃
k=0

akH contains p · |H| = pi+1 elements.
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Our unknown group of order 200

We now know a little bit more about the structure of our mystery group of order
|M| = 23 · 52:

M has a 2-subgroup P2 of order 23 = 8;

M has a 5-subgroup P5 of order 25 = 52;

Each of these subgroups contains a nested chain of p-subgroups, down to the
trivial group, {e}.

?

?

e

?

?

?

|M|=200

•

•b
•b2

•
b3

•
b4

•a
|a|= 2

|b|= 5

25

4

8
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The 2nd Sylow Theorem: Relationship among p-subgroups

Definition

A subgroup H < G of order pn, where |G | = pn ·m with p - m is called a Sylow
p-subgroup of G . Let Sylp(G) denote the set of Sylow p-subgroups of G .

Second Sylow Theorem

Any two Sylow p-subgroups are conjugate (and hence isomorphic).

Proof

Let H < G be any Sylow p-subgroup of G , and let S = G/H = {Hg | g ∈ G}, the
set of right cosets of H.

Pick any other Sylow p-subgroup K of G . (If there is none, the result is trivial.)

The group K acts on S by right-multiplication, via φ : K → Perm(S), where

φ(k) = the permutation sending each Hg to Hgk.

M. Macauley (Clemson) Section 5: Groups acting on sets Math 4120, Modern Algebra 42 / 56

mailto:macaule@clemson.edu


The 2nd Sylow Theorem: All Sylow p-subgroups are conjugate

Proof

A fixed point of φ is a coset Hg ∈ S such that

Hgk = Hg , ∀k ∈ K ⇐⇒ Hgkg−1 = H , ∀k ∈ K
⇐⇒ gkg−1 ∈ H , ∀k ∈ K
⇐⇒ gKg−1 ⊂ H
⇐⇒ gKg−1 = H .

Thus, if φ has a fixed point Hg , then H and K are conjugate by g , and we’re done!

All we need to do is show that |Fix(φ)| 6≡p 0.

By the p-group Lemma, |Fix(φ)| ≡p |S |. Recall that |S | = [G ,H].

Since H is a Sylow p-subgroup, |H| = pn. By Lagrange’s Theorem,

|S | = [G : H] =
|G |
|H| =

pnm

pn
= m, p - m .

Therefore, |Fix(φ)| ≡p m 6≡p 0. �
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Our unknown group of order 200

We now know even more about the structure of our mystery group M, of order
|M| = 23 · 52:

If M has any other Sylow 2-subgroup, it is isomorphic to P2;

If M has any other Sylow 5-subgroup, it is isomorphic to P5.

?

e

?

?

?

|M|=200

•

•b
•b2

•
b3

•
b4

• a

•

|a|= 2

|b|= 5

25

48

If any other Sylow
2-subgroup exists,
it is isomorphic to

the first
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The 3rd Sylow Theorem: Number of p-subgroups

Third Sylow Theorem

Let np be the number of Sylow p-subgroups of G . Then

np divides |G | and np ≡p 1 .

(Note that together, these imply that np | m, where |G | = pn ·m.)

Proof

The group G acts on S = Sylp(G) by conjugation, via φ : G → Perm(S), where

φ(g) = the permutation sending each H to g−1Hg .

By the Second Sylow Theorem, all Sylow p-subgroups are conjugate! Thus there is
only one orbit, Orb(H), of size np = |S |.

By the Orbit-Stabilizer Theorem,

|Orb(H)|︸ ︷︷ ︸
=np

·| Stab(H)| = |G | =⇒ np divides |G | .
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The 3rd Sylow Theorem: Number of p-subgroups

Proof (cont.)

Now, pick any H ∈ Sylp(G) = S . The group H acts on S by conjugation, via
θ : H → Perm(S), where

θ(h) = the permutation sending each K to h−1Kh.

Let K ∈ Fix(θ). Then K ≤ G is a Sylow p-subgroup satisfying

h−1Kh = K , ∀h ∈ H ⇐⇒ H ≤ NG (K) ≤ G .

We know that:

H and K are Sylow p-subgroups of G , but also of NG (K).

Thus, H and K are conjugate in NG (K). (2nd Sylow Thm.)

K C NG (K), thus the only conjugate of K in NG (K) is itself.

Thus, K = H. That is, Fix(θ) = {H} contains only 1 element.

By the p-group Lemma, np := |S | ≡p |Fix(θ)| = 1. �
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Summary of the proofs of the Sylow Theorems

For the 1st Sylow Theorem, we started with H = {e}, and inductively created larger
subgroups of size p, p2, . . . , pn.

For the 2nd and 3rd Sylow Theorems, we used a clever group action and then applied
one or both of the following:

(i) Orbit-Stabilizer Theorem. If G acts on S , then |Orb(s)|·| Stab(s)| = |G |.
(ii) p-group Lemma. If a p-group acts on S , then |S | ≡p |Fix(φ)|.

To summarize, we used:

S2 The action of K ∈ Sylp(G) on S = G/H by right multiplication for some other
H ∈ Sylp(G).

S3a The action of G on S = Sylp(G), by conjugation.

S3b The action of H ∈ Sylp(G) on S = Sylp(G), by conjugation.
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Our unknown group of order 200

We now know a little bit more about the structure of our mystery group M, of order
|M| = 23 · 52 = 200:

n5 | 8, thus n5 ∈ {1, 2, 4, 8}. But n5 ≡5 1, so n5 = 1.

n2 | 25 and is odd. Thus n2 ∈ {1, 5, 25}.
We conclude that M has a unique (and hence normal) Sylow 5-subgroup P5 (of
order 52 = 25), and either 1, 5, or 25 Sylow 2-subgroups (of order 23 = 8).

?

e

?

?

|M|=200 The only Sylow
5-subgroup is normal

There may be other
Sylow 2-subgroups

•

•b
•b2

•
b3

•
b4

•a
|a|= 2

|b|= 5

25

4

8
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Our unknown group of order 200

?

e

?

?

|M|=200 The only Sylow
5-subgroup is normal

There may be other
Sylow 2-subgroups

•

•b
•b2

•
b3

•
b4

•a
|a|= 2

|b|= 5

25

4

8

Suppose M has a subgroup isomorphic to D4.

This would be a Sylow 2-subgroup. Since all of them are conjugate, M cannot
contain a subgroup isomorphic to Q8, C4 × C2, or C8!

In particular, M cannot even contain an element of order 8. (Why?)
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Simple groups and the Sylow theorems

Definition

A group G is simple if its only normal subgroups are G and 〈e〉.

Since all Sylow p-subgroups are conjugate, the following result is straightforward:

Proposition (HW)

A Sylow p-subgroup is normal in G if and only if it is the unique Sylow p-subgroup
(that is, if np = 1).

The Sylow theorems are very useful for establishing statements like:

There are no simple groups of order k (for some k).

To do this, we usually just need to show that np = 1 for some p dividing |G |.

Since we established n5 = 1 for our running example of a group of size
|M| = 200 = 23 · 52, there are no simple groups of order 200.
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An easy example

Tip

When trying to show that np = 1, it’s usually more helpful to analyze the largest
primes first.

Proposition

There are no simple groups of order 84.

Proof

Since |G | = 84 = 22 · 3 · 7, the Third Sylow Theorem tells us:

n7 divides 22 · 3 = 12 (so n7 ∈ {1, 2, 3, 4, 6, 12})
n7 ≡7 1.

The only possibility is that n7 = 1, so the Sylow 7-subgroup must be normal. �

Observe why it is beneficial to use the largest prime first:

n3 divides 22 · 7 = 28 and n3 ≡3 1. Thus n3 ∈ {1, 2, 4, 7, 14, 28}.
n2 divides 3 · 7 = 21 and n2 ≡2 1. Thus n2 ∈ {1, 3, 7, 21}.
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A harder example

Proposition

There are no simple groups of order 351.

Proof

Since |G | = 351 = 33 · 13, the Third Sylow Theorem tells us:

n13 divides 33 = 27 (so n13 ∈ {1, 3, 9, 27})
n13 ≡13 1.

The only possibilies are n13 = 1 or 27.

A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order 33 = 27.
Therefore, P ∩ Q = {e}.

Suppose n13 = 27. Every Sylow 13-subgroup contains 12 non-identity elements, and
so G must contain 27 · 12 = 324 elements of order 13.

This leaves 351− 324 = 27 elements in G not of order 13. Thus, G contains only
one Sylow 3-subgroup (i.e., n3 = 1) and so G cannot be simple. �
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The hardest example

Proposition

If H � G and |G | does not divide [G : H]!, then G cannot be simple.

Proof

Let G act on the right cosets of H (i.e., S = G/H) by right-multiplication:

φ : G −→ Perm(S) ∼= Sn , φ(g) = the permutation that sends each Hx to Hxg .

Recall that the kernel of φ is the intersection of all conjugate subgroups of H:

Ker φ =
⋂
x∈G

x−1Hx .

Notice that 〈e〉 ≤ Ker φ ≤ H � G , and Ker φC G .

If Ker φ = 〈e〉 then φ : G ↪→ Sn is an embedding. But this is impossible because |G |
does not divide |Sn| = [G : H]!. �

Corollary

There are no simple groups of order 24.
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Theorem (classification of finite simple groups)

Every finite simple group is isomorphic to one of the following groups:

A cyclic group Zp, with p prime;

An alternating group An, with n ≥ 5;

A Lie-type Chevalley group: PSL(n, q), PSU(n, q), PsP(2n, p), and PΩε(n, q);

A Lie-type group (twisted Chevalley group or the Tits group): D4(q), E6(q),
E7(q), E8(q), F4(q), 2F4(2n)′, G2(q), 2G2(3n), 2B(2n);

One of 26 exceptional “sporadic groups.”

The two largest sporadic groups are the:

“baby monster group” B, which has order

|B| = 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47 ≈ 4.15× 1033;

“monster group” M, which has order

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8.08× 1053.

The proof of this classification theorem is spread across ≈ 15,000 pages in ≈ 500
journal articles by over 100 authors, published between 1955 and 2004.
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18 830 052 912 953 932 311 099 032 439

972 660 332 140 886 784 940 152 038 522
449 391 826 616 580 150 109 878 711 243
949 982 163 694 448 626 420 940 800 000

E8(4)
191 797 292 142 671 717 754 639 757 897
512 906 421 357 507 604 216 557 533 558
287 598 236 977 154 127 870 984 484 770
345 340 348 298 409 697 395 609 822 849
492 217 656 441 474 908 160 000 000 000

E8(q)
q120(q30 − 1)(q24 − 1)

(q20 − 1)(q18 − 1)(q14 − 1)
(q12 − 1)(q8 − 1)(q2 − 1)

F4(2)
3 311 126

603 366 400

F4(3)
5 734 420 792 816

671 844 761 600

F4(4)

19 009 825 523 840 945
451 297 669 120 000

F4(q)

q24(q12 − 1)(q8 − 1)
(q6 − 1)(q2 − 1)

G2(3)

4 245 696

G2(4)

251 596 800

G2(5)

5 859 000 000

G2(q)

q6(q6 − 1)(q2 − 1)

A2
2(9)

6 048

G2(2)′

A2
2(16)

62 400

A2
2(25)

126 000

A2
3(9)

3 265 920

A2
2(64)

5 515 776

A2
n(q2)

qn(n+1)/2

(n+1,q+1)

n+1

∏
i=2

(qi − (−1)i)

PSUn+1(q)

D2
4(22)

197 406 720

D2
4(32)

10 151 968 619 520

D2
5(22)

25 015 379 558 400

D2
4(42)

67 536 471
195 648 000

D2
4(52)

17 880 203 250
000 000 000

D2
n(q2)

qn(n−1)(qn+1)

(4,qn+1)

n−1

∏
i=1

(q2i − 1)

O−
2n(q)

D3
4(23)

211 341 312

D3
4(33)

20 560 831 566 912

D3
4(43)

67 802 350
642 790 400

D3
4(q3)

q12(q8 + q4 + 1)
(q6 − 1)(q2 − 1)

E2
6(22)

76 532 479 683
774 853 939 200

E2
6(32)

14 636 855 916 969 695 633
965 120 680 532 377 600

E2
6(42)

85 696 576 147 617 709
485 896 772 387 584
983 695 360 000 000

E2
6(q2)

q36(q12 − 1)(q9 + 1)(q8 − 1)
(q6 − 1)(q5 + 1)(q2 − 1)

(3, q + 1)

B2
2(23)

29 120

B2
2(25)

32 537 600

B2
2(27)

34 093 383 680

B2
2(22n+1)

q2(q2 + 1)(q − 1)

F2
4(2)′

17 971 200

Tits∗

F2
4(23)

264 905 352 699
586 176 614 400

F2
4(25)
1 318 633 155

799 591 447 702 161
609 782 722 560 000

F2
4(22n+1)

q12(q6 + 1)(q4 − 1)
(q3 + 1)(q − 1)

G2
2(33)

10 073 444 472

G2
2(35)

49 825 657
439 340 552

G2
2(37)

239 189 910 264
352 349 332 632

G2
2(32n+1)

q3(q3 + 1)(q − 1)

M11

7 920

M12

95 040

M22

443 520

M23

10 200 960

M24

244 823 040

J1

175 560

J(1), J(11)

J2

604 800

H J

J3

50 232 960

H JM

J4
86 775 571 046

077 562 880

HS

44 352 000

McL

898 128 000

He

4 030 387 200

F7, HHM, HT H

Ru

145 926 144 000

Suz

448 345 497 600

Sz

O’N

460 815 505 920

O’NS, O–S

Co3

495 766 656 000

·3

Co2

42 305 421 312 000

·2

Co1
4 157 776 806

543 360 000

·1

HN
273 030

912 000 000

F5, D

Ly
51 765 179

004 000 000

LyS

Th
90 745 943

887 872 000

F3, E

Fi22

64 561 751 654 400

M(22)

Fi23
4 089 470 473

293 004 800

M(23)

Fi′24
1 255 205 709 190

661 721 292 800

F3+, M(24)′

B

4 154 781 481 226 426
191 177 580 544 000 000

F2

M
808 017 424 794 512 875
886 459 904 961 710 757
005 754 368 000 000 000

F1, M1

C2

2

C3

3

C5

5

C7

7

C11

11

C13

13

Cp

p

Zp

The Periodic Table Of Finite Simple Groups

Dynkin Diagrams of Simple Lie Algebras

An
1 2 3 n

Bn
1 2 3 n

〈

Cn
1 2 3 n

〉

Dn
3 4 n

1

2

E6,7,8
1 2 3 5 6 7 8

4

F4
1 2 3 4

〉

G2
1 2

〉

Alternating Groups
Classical Chevalley Groups
Chevalley Groups
Classical Steinberg Groups
Steinberg Groups
Suzuki Groups
Ree Groups and Tits Group∗

Sporadic Groups
Cyclic Groups

Symbol

Order‡

Alternates†

∗The Tits group F2
4(2)′ is not a group of Lie type,

but is the (index 2) commutator subgroup of F2
4(2).

It is usually given honorary Lie type status.

†For sporadic groups and families, alternate names
in the upper left are other names by which they
may be known. For specific non-sporadic groups
these are used to indicate isomorphims. All such
isomorphisms appear on the table except the fam-
ily Bn(2m) ∼= Cn(2m).

‡Finite simple groups are determined by their order
with the following exceptions:

Bn(q) and Cn(q) for q odd, n > 2;
A8

∼= A3(2) and A2(4) of order 20160.

The groups starting on the second row are the clas-
sical groups. The sporadic suzuki group is unrelated
to the families of Suzuki groups.
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