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Some history and the search for the quintic

The quadradic formula is well-known. It gives us the two roots of a degree-2
polynomial ax2 + bx + c = 0:

x1,2 =
−b ±

√
b2 − 4ac

2a
.

There are formulas for cubic and quartic polynomials, but they are very complicated.
For years, people wondered if there was a quintic formula. Nobody could find one.

In the 1830s, 19-year-old political activist Évariste Galois, with no
formal mathematical training proved that no such formula existed.

He invented the concept of a group to solve this problem.

After being challenged to a dual at age 20 that he knew he would lose, Galois spent
the last few days of his life frantically writing down what he had discovered.

In a final letter Galois wrote, “Later there will be, I hope, some people who will find
it to their advantage to decipher all this mess.”

Hermann Weyl (1885–1955) described Galois’ final letter as: “if judged by the
novelty and profundity of ideas it contains, is perhaps the most substantial piece of
writing in the whole literature of mankind.” Thus was born the field of group theory!
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Arithmetic

Most people’s first exposure to mathematics comes in the form of counting.

At first, we only know about the natural numbers, N = {1, 2, 3, . . . }, and how to add
them.

Soon after, we learn how to subtract, and we learn about negative numbers as well.
At this point, we have the integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

Then, we learn how to divide numbers, and are introducted to fractions. This brings
us to the rational numbers, Q = { a

b
| a, b ∈ Z, b 6= 0}.

Though there are other numbers out there (irrational, complex, etc.), we don’t need
these to do basic arithmetic.

Key point

To do arithmetic, we need at least the rational numbers.
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Fields

Definition

A set F with addition and multiplication operations is a field if the following three
conditions hold:

F is an abelian group under addition.

F \ {0} is an abelian group under multiplication.

The distributive law holds: a(b + c) = ab + ac.

Examples

The following sets are fields: Q, R, C, Zp (prime p).

The following sets are not fields: N, Z, Zn (composite n).

Definition

If F and E are fields with F ⊂ E , we say that E is an extension of F .

For example, C is an extension of R, which is an extension of Q.

In this chapter, we will explore some more unusual fields and study their
automorphisms.
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An extension field of Q

Question

What is the smallest extension field F of Q that contains
√

2?

This field must contain all sums, differences, and quotients of numbers we can get
from

√
2. For example, it must include:

−
√

2, 1√
2
, 6 +

√
2,

(√
2 + 3

2

)3
,

√
2

16+
√
2
.

However, these can be simplified. For example, observe that(√
2 + 3

2

)3
= (
√

2)3 + 9
2
(
√

2)2 + 27
4

√
2 + 27

8
= 99

8
+ 35

4

√
2 .

In fact, all of these numbers can be written as a + b
√

2, for some a, b ∈ Q.

Key point

The smallest extension of Q that contains
√

2 is called “Q adjoin
√

2,” and denoted:

Q(
√

2) = {a + b
√

2 : a, b ∈ Q} =
{

p
q

+ r
s

√
2 : p, q, r , s ∈ Z, q, s 6= 0

}
.
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Q(i): Another extension field of Q

Question

What is the smallest extension field F of Q that contains i =
√
−1?

This field must contain

−i , 2
i
, 6 + i ,

(
i + 3

2

)3
, i

16+i
.

As before, we can write all of these as a + bi , where a, b ∈ Q. Thus, the field “Q
adjoin i” is

Q(i) = {a + bi : a, b ∈ Q} =

{
p

q
+

r

s
i : p, q, r , s ∈ Z, q, s 6= 0

}
.

Remarks

Q(i) is much smaller than C. For example, it does not contain
√

2.

Q(
√

2) is a subfield of R, but Q(i) is not.

Q(
√

2) contains all of the roots of f (x) = x2 − 2. It is called the splitting field
of f (x). Similarly, Q(i) is the splitting field of g(x) = x2 + 1.
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Q(
√

2, i): Another extension field of Q

Question

What is the smallest extension field F of Q that contains
√

2 and i =
√
−1?

We can do this in two steps:

(i) Adjoin the roots of the polynomial x2 − 2 to Q, yielding Q(
√

2);

(ii) Adjoin the roots of the polynomial x2 + 1 to Q(
√

2), yielding Q(
√

2)(i);

An element in Q(
√

2, i) := Q(
√

2)(i) has the form

=α + βi α, β ∈ Q(
√

2)

= (a + b
√

2) + (c + d
√

2)i a, b, c, d ∈ Q
= a + b

√
2 + ci + d

√
2i a, b, c, d ∈ Q

We say that {1,
√

2, i ,
√

2i} is a basis for the extension Q(
√

2, i) over Q. Thus,

Q(
√

2, i) = {a + b
√

2 + ci + d
√

2i : a, b, c, d ∈ Q}

In summary, Q(
√

2, i) is constructed by starting with Q, and adjoining all roots of
h(x) = (x2 − 2)(x2 + 1) = x4 − x2 − 2. It is the splitting field of h(x).
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Q(
√

2,
√

3): Another extension field of Q

Question

What is the smallest extension field F of Q that contains
√

2 and
√

3?

This time, our field is Q(
√

2,
√

3), constructed by starting with Q, and adjoining all
roots of the polynomial h(x) = (x2 − 2)(x2 − 3) = x4 − 5x2 + 6.

It is not difficult to show that {1,
√

2,
√

3,
√

6} is a basis for this field, i.e.,

Q(
√

2,
√

3) = {a + b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q} .

Like with did with a group and its subgroups, we
can arrange the subfields of Q(

√
2,
√

3) in a lattice.

I’ve labeled each extension with the degree of the
polynomial whose roots I need to adjoin.

Just for fun: What group has a subgroup lattice
that looks like this?

Q(
√

2,
√

3)
2

vvvvvv 2

HHHHHH
2

Q(
√

2)

2 IIIIIII
Q(
√

6)

2

Q(
√

3)

2uuuuuuu

Q
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Field automorphisms

Recall that an automorphism of a group G was an isomorphism φ : G → G .

Definition

Let F be a field. A field automorphism of F is a bijection φ : F → F such that for all
a, b ∈ F ,

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) .

In other words, φ must preserve the structure of the field.

For example, let F = Q(
√

2). Verify (HW) that the function

φ : Q(
√

2) −→ Q(
√

2) , φ : a + b
√

2 7−→ a− b
√

2 .

is an automorphism. That is, show that

φ((a + b
√

2) + (c + d
√

2)) = · · · = φ(a + b
√

2) + φ(c + d
√

2)

φ((a + b
√

2)(c + d
√

2)) = · · · = φ(a + b
√

2)φ(c + d
√

2).

What other field automorphisms of Q(
√

2) are there?
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A defining property of field automorphisms

Field automorphisms are central to Galois theory! We’ll see why shortly.

Proposition

If φ is an automorphism of an extension field F of Q, then

φ(q) = q for all q ∈ Q.

Proof

Suppose that φ(1) = q. Clearly, q 6= 0. (Why?) Observe that

q = φ(1) = φ(1 · 1) = φ(1)φ(1) = q2 .

Similarly,
q = φ(1) = φ(1 · 1 · 1) = φ(1)φ(1)φ(1) = q3 .

And so on. It follows that qn = q for every n ≥ 1. Thus, q = 1. �

Corollary
√

2 is irrational. �
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The Galois group of a field extension

The set of all automorphisms of a field forms a group under composition.

Definition

Let F be an extension field of Q. The Galois group of F is the group of
automorphisms of F , denoted Gal(F ).

Here are some examples (without proof):

The Galois group of Q(
√

2) is C2:

Gal(Q(
√

2)) = 〈f 〉 ∼= C2 , where f :
√

2 7−→ −
√

2

An automorphism of F = Q(
√

2, i) is completely determined by where it sends√
2 and i . There are four possibilities: the identity map e, and{

h(
√

2) = −
√

2
h(i) = i

{
v(
√

2) =
√

2
v(i) = −i

{
r(
√

2) = −
√

2
r(i) = −i

Thus, the Galois group of F is Gal(Q(
√

2, i)) = 〈h, v〉 ∼= V4.
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Q(ζ, 3
√

2): Another extension field of Q
Question

What is the smallest extension field F of Q that contains all roots of g(x) = x3 − 2?

Let ζ = e2πi/3 = − 1
2

+
√
3

2
i . This is a 3rd root of unity;

the roots of x3 − 1 = (x − 1)(x2 + x + 1) are 1, ζ, ζ2.

Note that the roots of g(x) are

z1 =
3
√

2 , z2 = ζ
3
√

2 , z3 = ζ2
3
√

2 .

Thus, the field we seek is F = Q(z1, z2, z3).

ζ=e2πi/3

ζ2=e4πi/3

1

C

2π
3

I claim that F = Q(ζ, 3
√

2). Note that this field contains z1, z2, and z3. Conversely,
we can construct ζ and 3

√
2 from z1 and z2, using arithmetic.

A little algebra can show that

Q(ζ,
3
√

2) = {a + b
3
√

2 + c
3
√

4 + dζ + eζ
3
√

2 + f ζ
3
√

4 : a, b, c, d , e, f ∈ Q} .

Since ζ = − 1
2

+
√
3

2
i lies in Q(ζ, 3

√
2), so does 2(ζ + 1

2
) =
√

3i =
√
−3. Thus,

Q(ζ,
3
√

2) = Q(
√
−3,

3
√

2) = Q(
√

3i ,
3
√

2) .
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Subfields of Q(ζ, 3
√

2)

What are the subfields of

Q(ζ,
3
√

2) = {a + b
3
√

2 + c
3
√

4 + dζ + eζ
3
√

2 + f ζ
3
√

4 : a, b, c, d , e, f ∈ Q} ?

Note that (ζ2)2 = ζ4 = ζ, and so Q(ζ2) = Q(ζ) = {a + bζ : a, b ∈ Q}.

Similarly, ( 3
√

4)2 = 2 3
√

2, and so Q( 3
√

4) = Q( 3
√

2) = {a + b 3
√

2 + c 3
√

4 : a, b, c ∈ Q}.

There are two more subfields. As we did before, we can arrange them in a lattice:

Q(ζ, 3
√

2)

3

����������
2

2
KKKKK 2

UUUUUUUUUUU

Q( 3
√

2)

3

Q(ζ 3
√

2)

3

����������
Q(ζ2 3

√
2)

3

rrrrrrrrrrrrrrrrr

Q(ζ)

2 JJJJJJ

Q

Look familiar?

D3
2

yyyy

3
3

4444444444

3

HHHHHHHHHHHHH

〈r〉

3

2222222222

〈f 〉
2

〈rf 〉
2

xxxx
〈r 2f 〉

2kkkkkkkkkkk

〈e〉

Compare this to the
subgroup lattice of D3.
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Summary so far

Roughly speaking, a field is a group under both addition and multiplication (if we
exclude 0), with the distributive law connecting these two operations.

We are mostly interested in the field Q, and certain extension fields: F ⊇ Q. Some of
the extension fields we’ve encountered:

Q(
√

2), Q(i), Q(
√

2, i), Q(
√

2,
√

3), Q(ζ,
3
√

2).

An automorphism of a field F ⊃ Q is a structure-preserving map that fixes Q.

The set of all automorphisms of F ⊇ Q forms a group, called the Galois group of F ,
denoted Gal(F ).

There is an intriguing but mysterious connection between subfields of F and
subgroups of Gal(F ). This is at the heart of Galois theory!

Something to ponder

How does this all relate to solving polynomials with radicals?
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Polynomials

Definition

Let x be an unknown variable. A polynomial is a function

f (x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0 .

The highest non-zero power of n is called the degree of f .

We can assume that all of our coefficients ai lie in a field F .

For example, if each ai ∈ Z (not a field), we could alternatively say that ai ∈ Q.

Let F [x ] denote the set of polynomials with coefficients in F . We call this the set of
polynomials over F .

Remark

Even though Z is not a field, we can still write Z[x ] to be the set of polynomials with
integer coefficients. Most polynomials we encounter have integer coeffients anyways.

M. Macauley (Clemson) Section 6: Field and Galois theory Math 4120, Modern algebra 15 / 59

mailto:macaule@clemson.edu


Radicals

The roots of low-degree polynomials can be expressed using arithmetic and radicals.

For example, the roots of the polynomial f (x) = 5x4 − 18x2 − 27 are

x1,2 = ±

√
6
√

6 + 9

5
, x3,4 = ±

√
9− 6

√
6

5
.

Remark

The operations of arithmetic, and radicals, are really the “only way” we have to write
down generic complex numbers.

Thus, if there is some number that cannot be expressed using radicals, we have no
way to express it, unless we invent a special symbol for it (e.g., π or e).

Even weirder, since a computer program is just a string of 0s and 1s, there are only
countably infinite many possible programs.

Since R is an uncountable set, there are numbers (in fact, “almost all” numbers)
that can never be expressed algorithmically by a computer program! Such numbers
are called “uncomputable.”
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Algebraic numbers

Definition

A complex number is algebraic (over Q) if it is the root of some polynomial in Z[x ].
The set A of all algebraic numbers forms a field (this is not immediately obvious).

A number that is not algebraic over Q (e.g., π, e) is called transcendental.

Every number that can be expressed from the natural numbers using arithmetic and
radicals is algebraic. For example, consider

x = 5
√

1 +
√
−3 ⇐⇒ x5 = 1 +

√
−3

⇐⇒ x5 − 1 =
√
−3

⇐⇒ (x5 − 1)2 = −3
⇐⇒ x10 − 2x5 + 4 = 0 .

Question

Can all algebraic numbers be expressed using radicals?

This question was unsolved until the early 1800s.
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Hasse diagrams

The relationship between the natural numbers N, and the fields Q, R, A, and C, is
shown in the following Hasse diagrams.

C complex numbers a + bi , for a, b ∈ R

R real numbers

Q rational numbers, a
b for a, b ∈ Z (b 6= 0)

C

algebraic closure

A
???

||||||||

solving polynomial equations???

using radicals AAAAAAAA

Q

operations of arithmetic

N
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Some basic facts about the complex numbers

Definition

A field F is algebraically closed if for any polynomial f (x) ∈ F [x ], all of the roots of
f (x) lie in F .

Non-examples

Q is not algebraically closed because f (x) = x2 − 2 ∈ Q[x ] has a root
√

2 6∈ Q.

R is not algebraically closed because f (x) = x2 + 1 ∈ R[x ] has a root
√
−1 6∈ R.

Fundamental theorem of algebra

The field C is algebraically closed.

Thus, every polynomial f (x) ∈ Z[x ] completely factors, or splits over C:

f (x) = (x − r1)(x − r2) · · · (x − rn) , ri ∈ C .

Conversely, if F is not algebraically closed, then there are polynomials f (x) ∈ F [x ]
that do not split into linear factors over F .
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Complex conjugates

Recall that complex roots of f (x) ∈ Q[x ] come
in conjugate pairs: If r = a + bi is a root, then
so is r := a− bi .

For example, here are the roots of some polyno-
mials (degrees 2 through 5) plotted in the com-
plex plane. All of them exhibit symmetry across
the x-axis.

•
1 + i

•
1 − i

f (x) = x2 − 2x + 2

Roots: 1 ± i

x

y

•
2 + 1

2
i

•
2 − 1

2
i

•
− 1

3

f (x) = 12x3 − 44x2 + 35x + 17

Roots: − 1
3
, 2± 1

2
i

x

y

•

√
2

2
+

√
2

2
i

•√
2

2
−
√

2
2

i

•
−
√

2
2

+

√
2

2
i

•
−
√

2
2
−
√

2
2

i

f (x) = x4 + 1

Roots: ±
√

2
2
±
√

2
2

x

y

•
−2

•

1
2

+ i

•
1
2
− i

•

3
2

•
3

f (x) = 8x5−28x4−6x3+83x2−117x+90

Roots: −2, 3
2
, 3, 1

2
i± i

x

y
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Irreducibility

Definition

A polynomial f (x) ∈ F [x ] is reducible over F if we can factor it as f (x) = g(x)h(x)
for some g(x), h(x) ∈ F [x ] of strictly lower degree. If f (x) is not reducible, we say it
is irreducible over F .

Examples

x2 − x − 6 = (x + 2)(x − 3) is reducible over Q.

x4 + 5x2 + 4 = (x2 + 1)(x2 + 4) is reducible over Q, but it has no roots in Q.

x3 − 2 is irreducible over Q. If we could factor it, then one of the factors would
have degree 1. But x3 − 2 has no roots in Q.

Facts

If deg(f ) > 1 and has a root in F , then it is reducible over F .

Every polynomial in Z[x ] is reducible over C.

If f (x) ∈ F [x ] is a degree-2 or 3 polynomial, then f (x) is reducible over F if and
only if f (x) has a root in F .
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Eisenstein’s criterion for irreducibility

Lemma

Let f ∈ Z[x ] be irreducible. Then f is also irreducible over Q.

Equivalently, if f ∈ Z[x ] factors over Q, then it factors over Z.

Theorem (Eisenstein’s criterion)

A polynomial f (x) = anxn + an−1xn−1 + · · · a1x + a0 ∈ Z[x ] is irreducible if for some
prime p, the following all hold:

1. p - an;

2. p | ak for k = 0, . . . , n − 1;

3. p2 - a0.

For example, Eisenstein’s criterion tells us that x10 + 4x7 + 18x + 14 is irreducible.

Remark

If Eisenstein’s criterion fails for all primes p, that does not necessarily imply that f is
reducible. For example, f (x) = x2 + x + 1 is irreducible over Q, but Eisenstein
cannot detect this.

M. Macauley (Clemson) Section 6: Field and Galois theory Math 4120, Modern algebra 22 / 59

mailto:macaule@clemson.edu


Extension fields as vector spaces
Recall that a vector space over Q is a set of vectors V such that

If u, v ∈ V , then u + v ∈ V (closed under addition)

If v ∈ V , then cv ∈ V for all c ∈ Q (closed under scalar multiplication).

The field Q(
√

2) is a 2-dimensional vector space over Q:

Q(
√

2) = {a + b
√

2 : a, b ∈ Q}.

This is why we say that {1,
√

2} is a basis for Q(
√

2) over Q.

Notice that the other field extensions we’ve seen are also vector spaces over Q:

Q(
√

2, i) = {a + b
√

2 + ci + d
√

2i : a, b, c, d ∈ Q},
Q(ζ, 3

√
2) = {a + b 3

√
2 + c 3

√
4 + dζ + eζ 3

√
2 + f ζ 3

√
4 : a, b, c, d , e, f ∈ Q} .

As Q-vector spaces, Q(
√

2, i) has dimension 4, and Q(ζ, 3
√

2) has dimension 6.

Definition

If F ⊆ E are fields, then the degree of the extension, denoted [E : F ], is the
dimension of E as a vector space over F .

Equivalently, this is the number of terms in the expression for a general element for E
using coefficients from F .

M. Macauley (Clemson) Section 6: Field and Galois theory Math 4120, Modern algebra 23 / 59

mailto:macaule@clemson.edu


Minimial polynomials

Definition

Let r 6∈ F be algebraic. The minimal polynomial of r over F is the irreducible
polynomial in F [x ] of which r is a root. It is unique up to scalar multiplication.

Examples
√

2 has minimal polynomial x2 − 2 over Q, and [Q(
√

2) : Q] = 2.

i =
√
−1 has minimal polynomial x2 + 1 over Q, and [Q(i) : Q] = 2.

ζ = e2πi/3 has minimal polynomial x2 + x + 1 over Q, and [Q(ζ) : Q] = 2.
3
√

2 has minimal polynomial x3 − 2 over Q, and [Q( 3
√

2) : Q] = 3.

What are the minimal polynomials of the following numbers over Q?

−
√

2 , −i , ζ2 , ζ
3
√

2 , ζ2
3
√

2 .

Degree theorem

The degree of the extension Q(r) is the degree of the minimal polynomial of r .
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The Galois group of a polynomial

Definition

Let f ∈ Z[x ] be a polynomial, with roots r1, . . . , rn. The splitting field of f is the field

Q(r1, . . . , rn) .

The splitting field F of f (x) has several equivalent characterizations:

the smallest field that contains all of the roots of f (x);

the smallest field in which f (x) splits into linear factors:

f (x) = (x − r1)(x − r2) · · · (x − rn) ∈ F [x ] .

Recall that the Galois group of an extension F ⊇ Q is the group of automorphisms of
F , denoted Gal(F ).

Definition

The Galois group of a polynomial f (x) is the Galois group of its splitting field,
denoted Gal(f (x)).
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A few examples of Galois groups

The polynomial x2 − 2 splits in Q(
√

2), so

Gal(x2 − 2) = Gal(Q(
√

2)) ∼= C2 .

The polynomial x2 + 1 splits in Q(i), so

Gal(x2 + 1) = Gal(Q(i)) ∼= C2 .

The polynomial x2 + x + 1 splits in Q(ζ), where ζ = e2πi/3, so

Gal(x2 + x + 1) = Gal(Q(ζ)) ∼= C2 .

The polynomial x3 − 1 = (x − 1)(x2 + x + 1) also splits in Q(ζ), so

Gal(x3 − 1) = Gal(Q(ζ)) ∼= C2 .

The polynomial x4 − x2 − 2 = (x2 − 2)(x2 + 1) splits in Q(
√

2, i), so

Gal(x4 − x2 − 2) = Gal(Q(
√

2, i)) ∼= V4 .

The polynomial x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) splits in Q(
√

2,
√

3), so

Gal(x4 − 5x2 + 6) = Gal(Q(
√

2,
√

3)) ∼= V4 .

The polynomial x3 − 2 splits in Q(ζ, 3
√

2), so

Gal(x3 − 2) = Gal(Q(ζ,
3
√

2)) ∼= D3 ???

M. Macauley (Clemson) Section 6: Field and Galois theory Math 4120, Modern algebra 26 / 59

mailto:macaule@clemson.edu


The tower law of field extensions

Recall that if we had a chain of subgroups K ≤ H ≤ G , then the index satisfies a
tower law: [G : K ] = [G : H][H : K ].

Not surprisingly, the degree of field extensions obeys a similar tower law:

Theorem (Tower law)

For any chain of field extensions, F ⊂ E ⊂ K ,

[K : F ] = [K : E ][E : F ] .

We have already observed this in our subfield lattices:

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)︸ ︷︷ ︸
min. poly: x2−3

][ Q(
√

2) : Q︸ ︷︷ ︸
min. poly: x2−2

] = 2 · 2 = 4 .

Here is another example:

[Q(ζ,
3
√

2) : Q] = [Q(ζ,
3
√

2) : Q(
3
√

2)︸ ︷︷ ︸
min. poly: x2+x+1

][ Q(
3
√

2) : Q︸ ︷︷ ︸
min. poly: x3−2

] = 2 · 3 = 6 .
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Primitive elements
Primitive element theorem

If F is an extension of Q with [F : Q] <∞, then F has a primitive element: some
α 6∈ Q for which F = Q(α).

How do we find a primitive element α of F = Q(ζ, 3
√

2) = Q(i
√

3, 3
√

2)?

Let’s try α = i
√

3 3
√

2 ∈ F . Clearly, [Q(α) : Q] ≤ 6. Observe that

α2 = −3 3
√
4, α3 = −6i

√
3, α4 = −18 3

√
2, α5 = 18i 3

√
4
√

3, α6 = −108.

Thus, α is a root of x6 + 108. The following are equivalent (why?):

(i) α is a primitive element of F ;

(ii) [Q(α) : Q] = 6;

(iii) the minimal polynomial m(x) of α has degree 6;

(iv) x6 + 108 is irreducible (and hence must be m(x)).

In fact, [Q(α) :Q] = 6 holds because both 2 and 3 divide [Q(α) :Q]:

[Q(α) :Q] = [Q(α) :Q(i
√

3)] [Q(i
√
3) :Q]︸ ︷︷ ︸

=2

, [Q(α) :Q] = [Q(α) :Q(
3
√

2)] [Q(
3
√

2) :Q]︸ ︷︷ ︸
=3

.
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An example: The Galois group of x4 − 5x2 + 6

The polynomial f (x) = (x2− 2)(x2− 3) = x4− 5x2 + 6 has splitting field Q(
√

2,
√

3).

We already know that its Galois group should be V4. Let’s compute it explicitly; this
will help us understand it better.

We need to determine all automorphisms φ of Q(
√

2,
√

3). We know:

φ is determined by where it sends the basis elements {1,
√

2,
√

3,
√

6}.
φ must fix 1.

If we know where φ sends two of {
√

2,
√

3,
√

6}, then we know where it sends
the third, because

φ(
√

6) = φ(
√

2
√

3) = φ(
√

2)φ(
√

3) .

In addition to the identity automorphism e, we have{
φ2(
√

2) = −
√

2

φ2(
√

3) =
√

3

{
φ3(
√

2) =
√

2

φ3(
√

3) = −
√

3

{
φ4(
√

2) = −
√

2

φ4(
√

3) = −
√

3

Question

What goes wrong if we try to make φ(
√

2) =
√

3?
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An example: The Galois group of x4 − 5x2 + 6
There are 4 automorphisms of F = Q(

√
2,
√

3), the splitting field of x4 − 5x2 + 6:

e : a + b
√

2 + c
√

3 + d
√

6 7−→ a + b
√

2 + c
√

3 + d
√

6

φ2 : a + b
√

2 + c
√

3 + d
√

6 7−→ a− b
√

2 + c
√

3− d
√

6

φ3 : a + b
√

2 + c
√

3 + d
√

6 7−→ a + b
√

2− c
√

3− d
√

6

φ4 : a + b
√

2 + c
√

3 + d
√

6 7−→ a− b
√

2− c
√

3 + d
√

6

They form the Galois group of x4 − 5x2 + 6. The multiplication table and Cayley
diagram are shown below.

e

φ2

φ3

φ4

e φ2 φ3 φ4

e

φ2

φ3

φ4

φ2

e

φ4

φ3

φ3

φ4

e

φ2

φ4

φ3

φ2

e

e

φ3

φ2

φ4

•• ••
x

y

−
√

2−
√

3
√

2
√

3

φ2

φ3

Remarks

α =
√

2 +
√

3 is a primitive element of F , i.e., Q(α) = Q(
√

2,
√

3).

There is a group action of Gal(f (x)) on the set of roots S = {±
√

2,±
√

3} of
f (x).
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The Galois group acts on the roots

Theorem

If f ∈ Z[x ] is a polynomial with a root in a field extension F of Q, then any
automorphism of F permutes the roots of f .

Said differently, we have a group action of Gal(f (x)) on the set S = {r1, . . . , rn} of
roots of f (x).

That is, we have a homomorphism

ψ : Gal(f (x)) −→ Perm({r1, . . . , rn}) .

If φ ∈ Gal(f (x)), then ψ(φ) is a permutation of the roots of f (x).

This permutation is what results by “pressing the φ-button” – it permutes the roots
of f (x) via the automorphism φ of the splitting field of f (x).

Corollary

If the degree of f ∈ Z[x ] is n, then the Galois group of f is a subgroup of Sn.
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The Galois group acts on the roots

The next results says that “Q can’t tell apart the roots of an irreducible polynomial.”

The “One orbit theorem”

Let r1 and r2 be roots of an irreducible polynomial over Q. Then

(a) There is an isomorphism φ : Q(r1) −→ Q(r2) that fixes Q and with φ(r1) = r2.

(b) This remains true when Q is replaced with any extension field F , where
Q ⊂ F ⊂ C.

Corollary

If f (x) is irreducible over Q, then for any two roots r1 and r2 of f (x), the Galois
group Gal(f (x)) contains an automorphism φ : r1 7−→ r2.

In other words, if f (x) is irreducible, then the action of Gal(f (x)) on the set
S = {r1, . . . , rn} of roots has only one orbit.
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Normal field extensions

Definition

An extension field E of F is normal if it is the splitting field of some polynomial f (x).

If E is a normal extension over F , then every irreducible polynomial in F [x ] that has
a root in E splits over F .

Thus, if you can find an irreducible polynomial that has one, but not all of its roots
in E , then E is not a normal extension.

Normal extension theorem

The degree of a normal extension is the order of its Galois group.

Corollary

The order of the Galois group of a polynomial f (x) is the degree of the extension of
its splitting field over Q.
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Normal field extensions: Examples
Consider Q(ζ, 3

√
2) = Q(α), the splitting

field of f (x) = x3 − 2.

It is also the splitting field of
m(x) = x6 + 108, the minimal polynomial
of α = 3

√
2
√
−3.

Let’s see which of its intermediate
subfields are normal extensions of Q.

Q(ζ, 3
√

2)

3

����������
2

2
KKKKK 2

UUUUUUUUUUU

Q( 3
√

2)

3

Q(ζ 3
√

2)

3

����������
Q(ζ2 3

√
2)

3

rrrrrrrrrrrrrrrrr

Q(ζ)

2 JJJJJJ

Q
Q: Trivially normal.

Q(ζ): Splitting field of x2 + x + 1; roots are ζ, ζ2 ∈ Q(ζ). Normal.

Q( 3
√

2): Contains only one root of x3 − 2, not the other two. Not normal.

Q(ζ 3
√

2): Contains only one root of x3 − 2, not the other two. Not normal.

Q(ζ2 3
√

2): Contains only one root of x3 − 2, not the other two. Not normal.

Q(ζ, 3
√

2): Splitting field of x3 − 2. Normal.

By the normal extension theorem,

|Gal(Q(ζ))| = [Q(ζ) : Q] = 2 , |Gal(Q(ζ,
3
√

2))| = [Q(ζ,
3
√

2) : Q] = 6 .

Moreover, you can check that |Gal(Q( 3
√

2))| = 1 < [Q( 3
√

2) : Q] = 3.
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The Galois group of x3 − 2
We can now conclusively determine the Galois group of x3 − 2.

By definition, the Galois group of a polynomial is the Galois group of its splitting
field, so Gal(x3 − 2) = Gal(Q(ζ, 3

√
2)).

By the normal extension theorem, the order of the Galois group of f (x) is the degree
of the extension of its splitting field:

|Gal(Q(ζ,
3
√

2))| = [Q(ζ,
3
√

2) : Q] = 6 .

Since the Galois group acts on the roots of x3 − 2, it must be a subgroup of S3
∼= D3.

There is only one subgroup of S3 of order 6, so Gal(x3 − 2) ∼= S3. Here is the action
diagram of Gal(x3 − 2) acting on the set S = {r1, r2, r3} of roots of x3 − 2:

{
r : 3
√

2 7−→ ζ 3
√

2
r : ζ 7−→ ζ

{
f : 3
√

2 7−→ 3
√

2
f : ζ 7−→ ζ2

•
r1

•
r2

•
r3

x

y

f

r
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Paris, May 31, 1832

The night before a duel that Évariste Galois
knew he would lose, the 20-year-old stayed up
late preparing his mathematical findings in a
letter to Auguste Chevalier.

Hermann Weyl (1885–1955) said “This letter,
if judged by the novelty and profundity of
ideas it contains, is perhaps the most
substantial piece of writing in the whole
literature of mankind.”

Fundamental theorem of Galois theory

Given f ∈ Z[x ], let F be the splitting field of f , and G the Galois group. Then the
following hold:

(a) The subgroup lattice of G is identical to the subfield lattice of F , but
upside-down. Moreover, H C G if and only if the corresponding subfield is a
normal extension of Q.

(b) Given an intermediate field Q ⊂ K ⊂ F , the corresponding subgroup H < G
contains precisely those automorphisms that fix K .
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An example: the Galois correspondence for f (x) = x3 − 2

Q(ζ, 3
√

2)

3

����������
2

2
KKKKK 2

UUUUUUUUUUU

Q( 3
√

2)

3

Q(ζ 3
√

2)

3

����������
Q(ζ2 3

√
2)

3

rrrrrrrrrrrrrrrrr

Q(ζ)

2 JJJJJJ

Q
Subfield lattice of Q(ζ, 3

√
2)

D3
2

yyyy

3
3

4444444444

3

HHHHHHHHHHHHH

〈r〉

3

2222222222

〈f 〉
2

〈rf 〉
2

xxxx
〈r 2f 〉

2kkkkkkkkkkk

〈e〉
Subgroup lattice of Gal(Q(ζ, 3

√
2)) ∼= D3.

The automorphisms that fix Q are precisely those in D3.

The automorphisms that fix Q(ζ) are precisely those in 〈r〉.
The automorphisms that fix Q( 3

√
2) are precisely those in 〈f 〉.

The automorphisms that fix Q(ζ 3
√

2) are precisely those in 〈rf 〉.
The automorphisms that fix Q(ζ2 3

√
2) are precisely those in 〈r 2f 〉.

The automorphisms that fix Q(ζ, 3
√

2) are precisely those in 〈e〉.

The normal field extensions of Q are: Q, Q(ζ), and Q(ζ, 3
√

2).

The normal subgroups of D3 are: D3, 〈r〉 and 〈e〉.
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An example: the Galois correspondence for f (x) = x8 − 2
The splitting field of x8 − 2 over Q is Q( 8

√
2, i), a degree-16 extension over Q. Its

Galois group is the quasidihedral group G = QD8:

QD8 = 〈σ, τ | σ8 = 1, τ 2 = 1, στ = τσ3〉 .

Let ζ = e2πi/8

8
√

2
σ7−→ ζ 8
√

2

i 7−→ i

8
√

2
τ7−→ 8
√

2

i 7−→ −i

〈σ4〉

〈σ2〉〈σ2τ, σ4〉〈σ4, τ〉 〈στ〉 〈σ3τ〉

〈σ2, τ〉 〈σ〉 〈σ2, στ〉

〈σ, τ〉

〈e〉

〈σ6τ〉〈σ2τ〉〈σ4τ〉〈τ〉

Exercise

The subfields of Q( 8
√

2, i) are: Q, Q(i), Q(
√
2), Q( 4

√
2), Q( 8

√
2), Q(

√
2i), Q( 4

√
2i),

Q( 8
√
2i), Q(

√
2, i), Q( 4

√
2, i), Q((1 + i) 4

√
2), Q((1− i) 4

√
2), Q(ζ 8

√
2), Q(ζ3 8

√
2). Construct

the subfield lattice.
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Solvability

Definition

A group G is solvable if it has a chain of subgroups:

{e} = N0 C N1 C N2 C · · ·C Nk−1 C Nk = G .

such that each quotient Ni/Ni−1 is abelian.

Note: Each subgroup Ni need not be normal in G , just in Ni+1.

Examples

D4 = 〈r , f 〉 is solvable. There are many possible chains:

〈e〉C 〈f 〉C 〈r 2, f 〉C D4 , 〈e〉C 〈r〉C D4 , 〈e〉C 〈r 2〉C D4.

Any abelian group A is solvable: take N0 = {e} and N1 = A.

For n ≥ 5, the group An is simple and non-abelian. Thus, the only chain of
normal subgroups is

N0 = {e}C An = N1 .

Since N1/N0
∼= An is non-abelian, An is not solvable for n ≥ 5.
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Some more solvable groups

D3
∼= S3 is solvable: {e}C 〈r〉C D3.

{e}

〈rf 〉 〈r2f 〉〈f 〉

〈r〉

D3 = 〈r, f 〉

〈r〉
{e}
∼= C3, abelian

D3
〈r〉
∼= C2, abelian

{e}

C2

C3 C3 C3 C3

C4C4 C4

C6 C6 C6 C6

Q8

G

Q4
C2
∼=V4,

abelian

C2
{e}
∼= C2,

abelian

G
Q4
∼= C3, abelian

The group above at right is denoted G = SL(2, 3). It consists of all 2× 2 matrices
with determinant 1 over the field Z3 = {0, 1,−1}.

SL(2, 3) has order 24, and is the smallest solvable group that requires a three-step
chain of normal subgroups.
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The hunt for an unsolvable polynomial

The following lemma follows from the Correspondence Theorem. (Why?)

Lemma

If N C G , then G is solvable if and only if both N and G/N are solvable.

Corollary

Sn is not solvable for all n ≥ 5. (Since An C Sn is not solvable).

Galois’ theorem

A field extension E ⊃ Q contains only elements expressible by radicals if and only if
its Galois group is solvable.

Corollary

f (x) is solvable by radicals if and only if it has a solvable Galois group.

Thus, any polynomial with Galois group S5 is not solvable by radicals!
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An unsolvable quintic!

To find a polynomial not solvable by radicals, we’ll look for a polynomial f (x) with
Gal(f (x)) ∼= S5.

We’ll restrict our search to degree-5 polynomials, because Gal(f (x)) ≤ S5 for any
degree-5 polynomial f (x).

Key observation

Recall that for any 5-cycle σ and 2-cycle (=transposition) τ ,

S5 = 〈σ, τ〉 .

Moreover, the only elements in S5 of order 5 are 5-cycles, e.g., σ = (a b c d e).

Let f (x) = x5 + 10x4 − 2. It is irreducible by Eisenstein’s criterion (use p = 2). Let
F = Q(r1, . . . , r5) be its splitting field.

Basic calculus tells us that f exactly has 3 real roots. Let r1, r2 = a± bi be the
complex roots, and r3, r4, and r5 be the real roots.

Since f has distinct complex conjugate roots, complex conjugation is an
automorphism τ : F −→ F that transposes r1 with r2, and fixes the three real roots.
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An unsolvable quintic!

We just found our transposition τ = (r1 r2). All that’s left is to find an element (i.e.,
an automorphism) σ of order 5.

Take any root ri of f (x). Since f (x) is irreducible, it is the minimal polynomial of ri .
By the Degree Theorem,

[Q(ri ) : Q] = deg(minimum polynomial of ri ) = deg f (x) = 5 .

The splitting field of f (x) is F = Q(r1, . . . , r5), and by the normal extension theorem,
the degree of this extension over Q is the order of the Galois group Gal(f (x)).

Applying the tower law to this yields

|Gal(f (x))| = [Q(r1, r2, r3, r4, r5) : Q] = [Q(r1, r2, r3, r4, r5) : Q(r1)] [Q(r1) : Q]︸ ︷︷ ︸
=5

.

Thus, |Gal(f (x))| is a multiple of 5, so Cauchy’s theorem guarantees that G has an
element σ of order 5.

Since Gal(f (x)) has a 2-cycle τ and a 5-cycle σ, it must be all of S5.

Gal(f (x)) is an unsolvable group, so f (x) = x5 + 10x4 − 2 is unsolvable by radicals!
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Summary of Galois’ work

Let f (x) be a degree-n polynomial in Z[x ] (or Q[x ]). The roots of f (x) lie in some
splitting field F ⊇ Q.

The Galois group of f (x) is the automorphism group of F . Every such automorphism
fixes Q and permutes the roots of f (x).

This is a group action of Gal(f (x)) on the set of n roots! Thus, Gal(f (x)) ≤ Sn.

There is a 1–1 correspondence between subfields of F and subgroups of Gal(f (x)).

A polynomial is solvable by radicals iff its Galois group is a solvable group.

The symmetric group S5 is not a solvable group.

Since S5 = 〈τ, σ〉 for a 2-cycle τ and 5-cycle σ, all we need to do is find a degree-5
polynomial whose Galois group contains a 2-cycle and an element of order 5.

If f (x) is an irreducible degree-5 polynomial with 3 real roots, then complex
conjugation is an automorphism that transposes the 2 complex roots. Moreover,
Cauchy’s theorem tells us that Gal(f (x)) must have an element of order 5.

Thus, f (x) = x5 + 10x4 − 2 is not solvable by radicals!
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Geometry and the Ancient Greeks

Plato (5th century B.C.) believed that the only “perfect”
geometric figures were the straight line and the circle.

In Ancient Greek geometry, this philosophy meant that there were only two
instruments available to perform geometric constructions:

1. the ruler: a single unmarked straight edge.

2. the compass: collapses when lifted from the page

Formally, this means that the only permissible
constructions are those granted by Euclid’s
first three postulates.
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Geometry and the Ancient Greeks

Around 300 BC, ancient Greek mathematician Euclid wrote a
series of thirteen books that he called The Elements.

It is a collection of definitions, postulates (axioms), and
theorems & proofs, covering geometry, elementary number
theory, and the Greek’s “geometric algebra.”

Book 1 contained Euclid’s famous 10 postulates, and other
basic propositions of geometry.

Euclid’s first three postulates

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as
radius and one endpoint as center.

Using only these tools, lines can be divided into equal segments, angles can be
bisected, parallel lines can be drawn, n-gons can be “squared,” and so on.
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Geometry and the Ancient Greeks

One of the chief purposes of Greek mathematics was to find exact constructions for
various lengths, using only the basic tools of a ruler and compass.

The ancient Greeks were unable to find constructions for the following problems:

Problem 1: Squaring the circle

Draw a square with the same area as a given circle.

Problem 2: Doubling the cube

Draw a cube with twice the volume of a given cube.

Problem 3: Trisecting an angle

Divide an angle into three smaller angles all of the same size.

For over 2000 years, these problems remained unsolved.

Alas, in 1837, Pierre Wantzel used field theory to prove that these constructions were
impossible.
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What does it mean to be “constructible”?

Assume P0 is a set of points in R2 (or equivalently, in the complex plane C).

Definition

The points of intersection of any two distinct lines or circles are constructible in one
step.

A point r ∈ R2 is constructible from P0 if there is a finite sequence r1, . . . , rn = r of
points in R2 such that for each i = 1, . . . , n, the point ri is constructible in one step
from P0 ∪ {r1, . . . , ri−1}.

Example: bisecting a line

1. Start with a line p1p2;

2. Draw the circle of center p1 of radius p1p2;

3. Draw the circle of center p2 of radius p1p2;

4. Let r1 and r2 be the points of intersection;

5. Draw the line r1r2;

6. Let r3 be the intersection of p1p2 and r1r2.

•
p1

•
p2

•

•

r1

r2

•
r3
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Bisecting an angle

Example: bisecting an angle

1. Start with an angle at A;

2. Draw a circle centered at A;

3. Let B and C be the points of intersection;

4. Draw a circle of radius BC centered at B;

5. Draw a circle of radius BC centered at C ;

6. Let D and E be the intersections of these 2
circles;

7. Draw a line through DE .

•
A

•
B

•
C

•
D

•
E

•
re iθ/2

C

Suppose A is at the origin in the complex plane. Then B = r and C = re iθ.

Bisecting an angle means that we can construct re iθ/2 from re iθ.
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Constructible numbers: Real vs. complex

Henceforth, we will say that a point is constructible if it is constructible from the set

P0 = {(0, 0), (1, 0)} ⊂ R2 .

Say that z = x + yi ∈ C is constructible if (x , y) ∈ R2 is constructible. Let K ⊆ C
denote the constructible numbers.

Lemma

A complex number z = x + yi is constructible if x and y are constructible.

By the following lemma, we can restrict our focus on real constructible numbers.

Lemma

1. K ∩ R is a subfield of R if and only if K is a subfield of C.

2. Moreover, K ∩ R is closed under (nonnegative) square roots if and only if K is
closed under (all) square roots.

K ∩ R closed under square roots means that a ∈ K ∩ R+ implies
√

a ∈ K ∩ R.

K closed under square roots means that z = re iθ ∈ K implies
√

z =
√

re iθ/2 ∈ K .
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The field of constructible numbers

Theorem

The set of constructible numbers K is a subfield of C that is closed under taking
square roots and complex conjugation.

Proof (sketch)

Let a and b be constructible real numbers, with a > 0. It is elementary to check that
each of the following hold:

1. −a is constructible;

2. a + b is constructible;

3. ab is constructible;

4. a−1 is constructible;

5.
√

a is constructible;

6. a− bi is constructible provided that a + bi is.

Corollary

If a, b, c ∈ C are constructible, then so are the roots of ax2 + bx + c.
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Constructions as field extensions

Let F ⊂ K be a field generated by ruler and compass constructions.

Suppose α is constructible from F in one step. We wish to determine [F (α) : F ].

The three ways to construct new points from F

1. Intersect two lines. The solution to ax + by = c and dx + ey = f lies in F .

2. Intersect a circle and a line. The solution to{
ax + by = c
(x − d)2 + (y − e)2 = r 2

lies in (at most) a quadratic extension of F .

3. Intersect two circles. We need to solve the system{
(x − a)2 + (y − b)2 = s2

(x − d)2 + (y − e)2 = r 2

Multiply this out and subtract. The x2 and y 2 terms cancel, leaving the equation
of a line. Intersecting this line with one of the circles puts us back in Case 2.

In all of these cases, [F (α) : F ] ≤ 2.
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Constructions as field extensions

In others words, constructing a number α 6∈ F in one step amounts to taking a
degree-2 extension of F .

Theorem

A complex number α is constructible if and only if there is a tower of field extensions

Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ C

where α ∈ Kn and [Ki+1 : Ki ] ≤ 2 for each i .

Corollary

The set K ⊂ C of constructible numbers is a field. Moreover, if α ∈ K , then
[Q(α) : Q] = 2n for some integer n.

Next, we will show that the ancient Greeks’ classical construction problems are
impossible by demonstrating that each would yield a number α ∈ R such that
[Q(α) : Q] is not a power of two.
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Classical constructibility problems, rephrased

Problem 1: Squaring the circle

Given a circle of radius r (and hence of area πr 2), construct a square of area πr 2

(and hence of side-length
√
πr).

If one could square the circle, then
√
π ∈ K ⊂ C, the field of constructible numbers.

However,
Q ⊂ Q(π) ⊂ Q(

√
π)

and so [Q(
√
π) : Q] ≥ [Q(π) : Q] =∞. Hence

√
π is not constructible.

Problem 2: Doubling the cube

Given a cube of length ` (and hence of volume `3), construct a cube of volume 2`3

(and hence of side-length 3
√

2`).

If one could double the cube, then 3
√

2 ∈ K .

However, [Q( 3
√

2) : Q] = 3 is not a power of two. Hence 3
√

2 is not constructible.

M. Macauley (Clemson) Section 6: Field and Galois theory Math 4120, Modern algebra 54 / 59

mailto:macaule@clemson.edu


Classical constructibility problems, rephrased

Problem 3: Trisecting an angle

Given e iθ, construct e iθ/3. Or equivalently, construct cos(θ/3) from cos(θ).

We will show that θ = 60◦ cannot be trisected. In other words, that α = cos(20◦)
cannot be constructed from cos(60◦).

The triple angle formula yields

cos(θ) = 4 cos3(θ/3)− 3 cos(θ/3) .

Set θ = 60◦. Plugging in cos(θ) = 1/2 and α = cos(20◦) gives

4α3 − 3α− 1

2
= 0 .

Changing variables by u = 2α, and then multiplying through by 2:

u3 − 3u − 1 = 0 .

Thus, u is the root of the (irreducible!) polynomial x3 − 3x − 1. Therefore,
[Q(u) : Q] = 3, which is not a power of 2.

Hence, u = 2 cos(20◦) is not constructible, so neither is α = cos(20◦).
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Classical constructibility problems, resolved

The three classical ruler-and-compass constructions that stumped the ancient Greeks,
when translated in the language of field theory, are as follows:

Problem 1: Squaring the circle

Construct
√
π from 1.

Problem 2: Doubling the cube

Construct 3
√

2 from 1.

Problem 3: Trisecting an angle

Construct cos(θ/3) from cos(θ). [Or cos(20◦) from 1.]

Since none of these numbers these lie in an extension of Q of degree 2n, they are not
constructible.

If one is allowed a “marked ruler,” then these constructions become possible, which
the ancient Greeks were aware of.
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Construction of regular polygons

The ancient Greeks were also interested in constructing regular polygons. They knew
constructions for 3-, 5-, and 15-gons.

In 1796, nineteen-year-old Carl Friedrich Gauß, who was
undecided about whether to study mathematics or languages,
discovered how to construct a regular 17-gon.

Gauß was so pleased with his discovery that he dedicated his
life to mathematics.

He also proved the following theorem about which n-gons are constructible.

Theorem (Gauß, Wantzel)

Let p be an odd prime. A regular p-gon is constructible if and only if p = 22n + 1 for
some n ≥ 0.

The next question to ask is for which n is 22n + 1 prime?
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Construction of regular polygons and Fermat primes

Definition

The nth Fermat number is Fn := 22n + 1. If Fn is prime, then it is a Fermat prime.

The first few Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537.

They are named after Pierre Fermat (1601–1665), who conjectured in the 1600s that
all Fermat numbers Fn = 22n + 1 are prime.
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Construction of regular polygons and Fermat primes

In 1732, Leonhard Euler disproved Fermat’s
conjecture by demonstrating

F5 = 225+1 = 232+1 = 4294967297 = 641·6700417 .

It is not known if any other Fermat primes exist!

So far, every Fn is known to be composite for 5 ≤ n ≤ 32. In 2014, a computer
showed that 193× 23329782 + 1 is a prime factor of

F3329780 = 223329780 + 1 > 101010
6

.

Theorem (Gauß, Wantzel)

A regular n-gon is constructible if and only if n = 2kp1 · · · pm, where p1, . . . , pm are
distinct Fermat primes.

If these type of problems interest you, take Math 4100! (Number theory)
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