Section 7: Ring theory

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

What is a ring?

Definition

A ring is an additive (abelian) group R with an additional binary operation (multiplication), satisfying the distributive law:

$$x(y+z) = xy + xz$$
 and $(y+z)x = yx + zx \quad \forall x, y, z \in R$.

Remarks

- There need not be multiplicative inverses.
- Multiplication need not be commutative (it may happen that $xy \neq yx$).

A few more terms

If xy = yx for all $x, y \in R$, then R is commutative.

If R has a multiplicative identity $1=1_R\neq 0$, we say that "R has identity" or "unity", or "R is a ring with 1."

A subring of R is a subset $S \subseteq R$ that is also a ring.

What is a ring?

Examples

- 1. $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ are all commutative rings with 1.
- 2. \mathbb{Z}_n is a commutative ring with 1.
- 3. For any ring R with 1, the set $M_n(R)$ of $n \times n$ matrices over R is a ring. It has identity $1_{M_n(R)} = I_n$ iff R has 1.
- 4. For any ring R, the set of functions $F = \{f : R \to R\}$ is a ring by defining

$$(f+g)(r) = f(r) + g(r),$$
 $(fg)(r) = f(r)g(r).$

- 5. The set $S = 2\mathbb{Z}$ is a subring of \mathbb{Z} but it does *not* have 1.
- 6. $S = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \in \mathbb{R} \right\}$ is a subring of $R = M_2(\mathbb{R})$. However, note that

$$\mathbf{1}_R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \text{but} \qquad \mathbf{1}_S = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

7. If R is a ring and x a variable, then the set

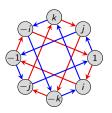
$$R[x] = \{a_n x^n + \cdots + a_1 x + a_0 \mid a_i \in R\}$$

is called the polynomial ring over R.

Another example: the quaternions

Recall the (unit) quaternion group:

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = -1, \ ij = k \rangle.$$



Allowing addition makes them into a ring \mathbb{H} , called the quaternions, or Hamiltonians:

$$\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}.$$

The set \mathbb{H} is isomorphic to a subring of $M_4(\mathbb{R})$, the real-valued 4×4 matrices:

$$\mathbb{H} = \left\{ \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\} \subseteq M_4(\mathbb{R}).$$

Formally, we have an embedding $\phi \colon \mathbb{H} \hookrightarrow M_4(\mathbb{R})$ where

$$\phi(i) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \phi(j) = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \quad \phi(k) = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

We say that \mathbb{H} is represented by a set of matrices.

Units and zero divisors

Definition

Let R be a ring with 1. A unit is any $x \in R$ that has a multiplicative inverse. Let U(R) be the set (a multiplicative group) of units of R.

An element $x \in R$ is a left zero divisor if xy = 0 for some $y \neq 0$. (Right zero divisors are defined analogously.)

Examples

- 1. Let $R = \mathbb{Z}$. The units are $U(R) = \{-1, 1\}$. There are no (nonzero) zero divisors.
- 2. Let $R=\mathbb{Z}_{10}.$ Then 7 is a unit (and $7^{-1}=3$) because $7\cdot 3=1.$ However, 2 is not a unit.
- 3. Let $R = \mathbb{Z}_n$. A nonzero $k \in \mathbb{Z}_n$ is a unit if gcd(n, k) = 1, and a zero divisor if $gcd(n, k) \geq 2$.
- 4. The ring $R = M_2(\mathbb{R})$ has zero divisors, such as:

$$\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

The groups of units of $M_2(\mathbb{R})$ are the invertible matrices.

Group rings

Let R be a commutative ring (usually, \mathbb{Z} , \mathbb{R} , or \mathbb{C}) and G a finite (multiplicative) group. We can define the group ring RG as

$$RG := \{a_1g_1 + \cdots + a_ng_n \mid a_i \in R, g_i \in G\},\$$

where multiplication is defined in the "obvious" way.

For example, let $R = \mathbb{Z}$ and $G = D_4 = \langle r, f \mid r^4 = f^2 = rfrf = 1 \rangle$, and consider the elements $x = r + r^2 - 3f$ and $y = -5r^2 + rf$ in $\mathbb{Z}D_4$. Their sum is

$$x + y = r - 4r^2 - 3f + rf,$$

and their product is

$$xy = (r + r^2 - 3f)(-5r^2 + rf) = r(-5r^2 + rf) + r^2(-5r^2 + rf) - 3f(-5r^2 + rf)$$

= $-5r^3 + r^2f - 5r^4 + r^3f + 15fr^2 - 3frf = -5 - 8r^3 + 16r^2f + r^3f$.

Remarks

- The (real) Hamiltonians \mathbb{H} is *not* the same ring as $\mathbb{R}Q_8$.
- If $g \in G$ has finite order |g| = k > 1, then RG always has zero divisors:

$$(1-g)(1+g+\cdots+g^{k-1})=1-g^k=1-1=0.$$

■ RG contains a subring isomorphic to R, and the group of units U(RG) contains a subgroup isomorphic to G.

Types of rings

Definition

If all nonzero elements of R have a multiplicative inverse, then R is a division ring. (Think: "field without commutativity".)

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors. (Think: "field without inverses".)

A field is just a commutative division ring. Moreover:

fields \subsetneq division rings

 $\mathsf{fields} \subsetneq \mathsf{integral} \; \mathsf{domains} \subsetneq \mathsf{all} \; \mathsf{rings}$

Examples

- Rings that are not integral domains: \mathbb{Z}_n (composite n), $2\mathbb{Z}$, $M_n(\mathbb{R})$, $\mathbb{Z} \times \mathbb{Z}$, \mathbb{H} .
- Integral domains that are not fields (or even division rings): \mathbb{Z} , $\mathbb{Z}[x]$, $\mathbb{R}[x]$, $\mathbb{R}[[x]]$ (formal power series).
- Division ring but not a field: III.

Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation: $ax = ay \implies x = y$. However, this need not hold in all rings!

Examples where cancellation fails

- In \mathbb{Z}_6 , note that $2 = 2 \cdot 1 = 2 \cdot 4$, but $1 \neq 4$.
- In $M_2(\mathbb{R})$, note that $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$.

However, everything works fine as long as there aren't any (nonzero) zero divisors.

Proposition

Let R be an integral domain and $a \neq 0$. If ax = ay for some $x, y \in R$, then x = y.

Proof

If
$$ax = ay$$
, then $ax - ay = a(x - y) = 0$.

Since $a \neq 0$ and R has no (nonzero) zero divisors, then x - y = 0.

Finite integral domains

Lemma (HW)

If R is an integral domain and $0 \neq a \in R$ and $k \in \mathbb{N}$, then $a^k \neq 0$.

Theorem

Every finite integral domain is a field.

Proof

Suppose R is a finite integral domain and $0 \neq a \in R$. It suffices to show that a has a multiplicative inverse.

Consider the infinite sequence a, a^2, a^3, a^4, \ldots , which must repeat.

Find i > j with $a^i = a^j$, which means that

$$0 = a^{i} - a^{j} = a^{j}(a^{i-j} - 1).$$

Since R is an integral domain and $a^{j} \neq 0$, then $a^{i-j} = 1$.

Thus,
$$a \cdot a^{i-j-1} = 1$$
.

Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a normal subgroup. The analogue of this for rings are (two-sided) ideals.

Definition

A subring $I \subseteq R$ is a left ideal if

$$rx \in I$$
 for all $r \in R$ and $x \in I$.

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write $l \leq R$.

Examples

- \blacksquare $n\mathbb{Z} \subseteq \mathbb{Z}$.
- If $R = M_2(\mathbb{R})$, then $I = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} : a, c \in \mathbb{R} \right\}$ is a left, but *not* a right ideal of R.
- The set $\operatorname{Sym}_n(\mathbb{R})$ of symmetric $n \times n$ matrices is a subring of $M_n(\mathbb{R})$, but *not* an ideal.

Ideals

Remark

If an ideal I of R contains 1, then I = R.

Proof

Suppose $1 \in I$, and take an arbitrary $r \in R$.

Then $r1 \in I$, and so $r1 = r \in I$. Therefore, I = R.

It is not hard to modify the above result to show that if I contains any unit, then I = R. (HW)

Let's compare the concept of a normal subgroup to that of an ideal:

normal subgroups are characterized by being invariant under conjugation:

$$H \leq G$$
 is normal iff $ghg^{-1} \in H$ for all $g \in G$, $h \in H$.

(left) ideals of rings are characterized by being invariant under (left) multiplication:

 $I \subseteq R$ is a (left) ideal iff $ri \in I$ for all $r \in R$, $i \in I$.

Ideals generated by sets

Definition

The left ideal generated by a set $X \subset R$ is defined as:

$$(X) := \bigcap \{I : I \text{ is a left ideal s.t. } X \subseteq I \subseteq R\}.$$

This is the smallest left ideal containing X.

There are analogous definitions by replacing "left" with "right" or "two-sided".

Recall the two ways to define the subgroup $\langle X \rangle$ generated by a subset $X \subseteq G$:

- "Bottom up": As the set of all finite products of elements in X;
- "Top down": As the intersection of all subgroups containing X.

Proposition (HW)

Let R be a ring with unity. The (left, right, two-sided) ideal generated by $X \subseteq R$ is:

- Left: $\{r_1x_1 + \cdots + r_nx_n : n \in \mathbb{N}, r_i \in R, x_i \in X\}$,
- Right: $\{x_1r_1 + \cdots + x_nr_n : n \in \mathbb{N}, r_i \in R, x_i \in X\}$,
- Two-sided: $\{r_1x_1s_1 + \cdots + r_nx_ns_n : n \in \mathbb{N}, r_i, s_i \in R, x_i \in X\}$.

Ideals and quotients

Since an ideal I of R is an additive subgroup (and hence normal), then:

- $\blacksquare R/I = \{x + I \mid x \in R\}$ is the set of cosets of I in R;
- \blacksquare R/I is a quotient group; with the binary operation (addition) defined as

$$(x+1) + (y+1) := x + y + I.$$

It turns out that if I is also a two-sided ideal, then we can make R/I into a ring.

Proposition

If $I \subseteq R$ is a (two-sided) ideal, then R/I is a ring (called a quotient ring), where multiplication is defined by

$$(x+I)(y+I) := xy + I.$$

Proof

We need to show this is well-defined. Suppose x+I=r+I and y+I=s+I. This means that $x-r\in I$ and $y-s\in I$.

It suffices to show that xy + I = rs + I, or equivalently, $xy - rs \in I$:

$$xy - rs = xy - ry + ry - rs = (x - r)y + r(y - s) \in I$$
.

Finite fields

We've already seen that \mathbb{Z}_p is a field if p is prime, and that finite integral domains are fields. But what do these "other" finite fields look like?

Let $R = \mathbb{Z}_2[x]$ be the polynomial ring over the field \mathbb{Z}_2 . (Note: we can ignore all negative signs.)

The polynomial $f(x) = x^2 + x + 1$ is irreducible over \mathbb{Z}_2 because it does not have a root. (Note that $f(0) = f(1) = 1 \neq 0$.)

Consider the ideal $I = (x^2 + x + 1)$, the set of multiples of $x^2 + x + 1$.

In the quotient ring R/I, we have the relation $x^2+x+1=0$, or equivalently, $x^2=-x-1=x+1$.

The quotient has only 4 elements:

$$0+I$$
, $1+I$, $x+I$, $(x+1)+I$.

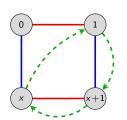
As with the quotient group (or ring) $\mathbb{Z}/n\mathbb{Z}$, we usually drop the "I", and just write

$$R/I = \mathbb{Z}_2[x]/(x^2+x+1) \cong \{0, 1, x, x+1\}.$$

It is easy to check that this is a field!

Finite fields

Here is a Cayley diagram, and the operation tables for $R/I = \mathbb{Z}_2[x]/(x^2+x+1)$:



+	0	1	x	$\times+1$
0	0	1	х	x+1
1	1	0	x+1	x
x	x	x+1	0	1
x+1	x+1	х	1	0

×	1	x	x+1
1	1	х	x+1
x	x	x+1	1
x+1	x+1	1	х

Theorem

There exists a finite field \mathbb{F}_q of order q, which is unique up to isomorphism, iff $q=p^n$ for some prime p. If n>1, then this field is isomorphic to the quotient ring

$$\mathbb{Z}_p[x]/(f)$$
,

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics over $\mathbb{F}_{2^8} = \mathbb{F}_{256}$. This is what allows your CD to play despite scratches.

Motivation (spoilers!)

Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory

- The quotient group G/N exists iff N is a normal subgroup.
- A homomorphism is a structure-preserving map: f(x * y) = f(x) * f(y).
- The kernel of a homomorphism is a normal subgroup: Ker $\phi \subseteq G$.
- For every normal subgroup $N \subseteq G$, there is a natural quotient homomorphism $\phi \colon G \to G/N, \ \phi(g) = gN.$
- There are four standard isomorphism theorems for groups.

Ring theory

- The quotient ring R/I exists iff I is a two-sided ideal.
- A homomorphism is a structure-preserving map: f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y).
- The kernel of a homomorphism is a two-sided ideal: Ker $\phi \subseteq R$.
- For every two-sided ideal $I \subseteq R$, there is a natural quotient homomorphism $\phi \colon R \to R/I$, $\phi(r) = r + I$.
- There are four standard isomorphism theorems for rings.

Ring homomorphisms

Definition

A ring homomorphism is a function $f: R \to S$ satisfying

$$f(x+y)=f(x)+f(y)$$
 and $f(xy)=f(x)f(y)$ for all $x,y\in R$.

A ring isomorphism is a homomorphism that is bijective.

The kernel $f: R \to S$ is the set $\operatorname{Ker} f := \{x \in R : f(x) = 0\}$.

Examples

- 1. The function $\phi \colon \mathbb{Z} \to \mathbb{Z}_n$ that sends $k \mapsto k \pmod{n}$ is a ring homomorphism with $\text{Ker}(\phi) = n\mathbb{Z}$.
- 2. For a fixed real number $\alpha \in \mathbb{R}$, the "evaluation function"

$$\phi \colon \mathbb{R}[x] \longrightarrow \mathbb{R}, \qquad \phi \colon p(x) \longmapsto p(\alpha)$$

is a homomorphism. The kernel consists of all polynomials that have α as a root.

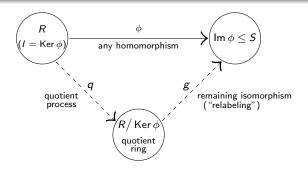
3. The following is a homomorphism, for the ideal $I=(x^2+x+1)$ in $\mathbb{Z}_2[x]$:

$$\phi: \mathbb{Z}_2[x] \longrightarrow \mathbb{Z}_2[x]/I, \qquad f(x) \longmapsto f(x) + I.$$

The isomorphism theorems for rings

Fundamental homomorphism theorem

If $\phi \colon R \to S$ is a ring homomorphism, then $\operatorname{Ker} \phi$ is an ideal and $\operatorname{Im}(\phi) \cong R/\operatorname{Ker}(\phi)$.



Proof (HW)

The statement holds for the underlying additive group R. Thus, it remains to show that $\operatorname{Ker} \phi$ is a (two-sided) ideal, and the following map is a ring homomorphism:

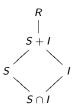
$$g: R/I \longrightarrow \operatorname{Im} \phi, \qquad g(x+I) = \phi(x).$$

The second isomorphism theorem for rings

Suppose S is a subring and I an ideal of R. Then

- (i) The sum $S + I = \{s + i \mid s \in S, i \in I\}$ is a subring of R and the intersection $S \cap I$ is an ideal of S.
- (ii) The following quotient rings are isomorphic:

$$(S+I)/I\cong S/(S\cap I).$$



Proof (sketch)

S+I is an additive subgroup, and it's closed under multiplication because

$$s_1,s_2\in S,\ i_1,i_2\in I \quad\Longrightarrow\quad (s_1+i_1)(s_2+i_2)=\underbrace{s_1s_2}_{\in S}+\underbrace{s_1i_2+i_1s_2+i_1i_2}_{\in I}\in S+I.$$

Showing $S \cap I$ is an ideal of S is straightforward (homework exercise).

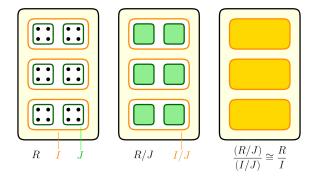
We already know that $(S+I)/I \cong S/(S \cap I)$ as additive groups.

One explicit isomorphism is $\phi \colon s + (S \cap I) \mapsto s + I$. It is easy to check that $\phi \colon 1 \mapsto 1$ and ϕ preserves products.

The third isomorphism theorem for rings

Freshman theorem

Suppose R is a ring with ideals $J\subseteq I$. Then I/J is an ideal of R/J and $(R/J)/(I/J)\cong R/I\,.$

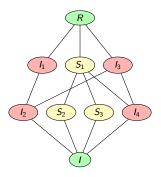


(Thanks to Zach Teitler of Boise State for the concept and graphic!)

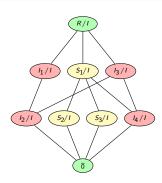
The fourth isomorphism theorem for rings

Correspondence theorem

Let I be an ideal of R. There is a bijective correspondence between subrings (& ideals) of R/I and subrings (& ideals) of R that contain I. In particular, every ideal of R/I has the form J/I, for some ideal J satisfying $I \subseteq J \subseteq R$.



subrings & ideals that contain I



subrings & ideals of R/I

Maximal ideals

Definition

An ideal I of R is maximal if $I \neq R$ and if $I \subseteq J \subseteq R$ holds for some ideal J, then J = I or J = R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

Examples

- 1. If $n \neq 0$, then the ideal M = (n) of $R = \mathbb{Z}$ is maximal if and only if n is prime.
- 2. Let $R = \mathbb{Q}[x]$ be the set of all polynomials over \mathbb{Q} . The ideal M = (x) consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring $\mathbb{Q}[x]/(x)$ have the form $f(x) + M = a_0 + M$.

3. Let $R = \mathbb{Z}_2[x]$, the polynomials over \mathbb{Z}_2 . The ideal $M = (x^2 + x + 1)$ is maximal, and $R/M \cong \mathbb{F}_4$, the (unique) finite field of order 4.

In all three examples above, the quotient R/M is a field.

Maximal ideals

Theorem

Let R be a commutative ring with 1. The following are equivalent for an ideal $I \subseteq R$.

- (i) I is a maximal ideal;
- (ii) R/I is simple;
- (iii) R/I is a field.

Proof

The equivalence (i) \Leftrightarrow (ii) is immediate from the Correspondence Theorem.

For (ii) \Leftrightarrow (iii), we'll show that an arbitrary ring R is simple iff R is a field.

"\Rightarrow": Assume R is simple. Then (a) = R for any nonzero $a \in R$.

Thus, $1 \in (a)$, so 1 = ba for some $b \in R$, so $a \in U(R)$ and R is a field. \checkmark

" \Leftarrow ": Let $I \subseteq R$ be a nonzero ideal of a field R. Take any nonzero $a \in I$.

Then $a^{-1}a \in I$, and so $1 \in I$, which means I = R. \checkmark

Prime ideals

Definition

Let R be a commutative ring. An ideal $P \subset R$ is prime if $ab \in P$ implies either $a \in P$ or $b \in P$.

Note that $p \in \mathbb{N}$ is a prime number iff p = ab implies either a = p or b = p.

Examples

- 1. The ideal (n) of \mathbb{Z} is a prime ideal iff n is a prime number (possibly n = 0).
- 2. In the polynomial ring $\mathbb{Z}[x]$, the ideal I = (2, x) is a prime ideal. It consists of all polynomials whose constant coefficient is even.

Theorem

An ideal $P \subseteq R$ is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is immediate:

Corollary

In a commutative ring, every maximal ideal is prime.

Divisibility and factorization

A ring is in some sense, a generalization of the familiar number systems like \mathbb{Z} , \mathbb{R} , and \mathbb{C} , where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:

- multiplication is commutative,
- there are no (nonzero) zero divisors.

Blanket assumption

Throughout this lecture, unless explicitly mentioned otherwise, R is assumed to be an integral domain, and we will define $R^* := R \setminus \{0\}$.

The integers have several basic properties that we usually take for granted:

- every nonzero number can be factored uniquely into primes;
- any two numbers have a unique greatest common divisor and least common multiple;
- there is a Euclidean algorithm, which can find the gcd of two numbers.

Surprisingly, these need not always hold in integrals domains! We would like to understand this better.

Divisibility

Definition

If $a, b \in R$, say that a divides b, or b is a multiple of a if b = ac for some $c \in R$. We write $a \mid b$.

If $a \mid b$ and $b \mid a$, then a and b are associates, written $a \sim b$.

Examples

- In \mathbb{Z} : n and -n are associates.
- In $\mathbb{R}[x]$: f(x) and $c \cdot f(x)$ are associates for any $c \neq 0$.
- The only associate of 0 is itself.
- \blacksquare The associates of 1 are the units of R.

Proposition (HW)

Two elements $a, b \in R$ are associates if and only if a = bu for some unit $u \in U(R)$.

This defines an equivalence relation on R, and partitions R into equivalence classes.

Irreducibles and primes

Note that units divide everything: if $b \in R$ and $u \in U(R)$, then $u \mid b$.

Definition

If $b \in R$ is not a unit, and the only divisors of b are units and associates of b, then b is irreducible.

An element $p \in R$ is prime if p is not a unit, and $p \mid ab$ implies $p \mid a$ or $p \mid b$.

Proposition

If $0 \neq p \in R$ is prime, then p is irreducible.

Proof

Suppose p is prime but not irreducible. Then p = ab with $a, b \notin U(R)$.

Then (wlog) $p \mid a$, so a = pc for some $c \in R$. Now,

$$p = ab = (pc)b = p(cb)$$
.

This means that cb = 1, and thus $b \in U(R)$, a contradiction.

Irreducibles and primes

Caveat: Irreducible ≠ prime

Consider the ring $R_{-5}:=\{a+b\sqrt{-5}:a,b\in\mathbb{Z}\}.$

$$3 \mid (2 + \sqrt{-5})(2 - \sqrt{-5}) = 9 = 3 \cdot 3$$

but $3 \nmid 2 + \sqrt{-5}$ and $3 \nmid 2 - \sqrt{-5}$.

Thus, 3 is irreducible in R_{-5} but *not* prime.

When irreducibles fail to be prime, we can lose nice properties like unique factorization.

Things can get really bad: not even the *lengths* of factorizations into irreducibles need be the same!

For example, consider the ring $R = \mathbb{Z}[x^2, x^3]$. Then

$$x^6 = x^2 \cdot x^2 \cdot x^2 = x^3 \cdot x^3$$
.

The element $x^2 \in R$ is not prime because $x^2 \mid x^3 \cdot x^3$ yet $x^2 \nmid x^3$ in R (note: $x \notin R$).

Principal ideal domains

Fortunately, there is a type of ring where such "bad things" don't happen.

Definition

An ideal I generated by a single element $a \in R$ is called a principal ideal. We denote this by I = (a).

If every ideal of R is principal, then R is a principal ideal domain (PID).

Examples

The following are all PIDs (stated without proof):

- The ring of integers, \mathbb{Z} .
- \blacksquare Any field F.
- The polynomial ring F[x] over a field.

As we will see shortly, PIDs are "nice" rings. Here are some properties they enjoy:

- pairs of elements have a "greatest common divisor" & "least common multiple";
- irreducible ⇒ prime;
- Every element factors uniquely into primes.

Greatest common divisors & least common multiples

Proposition

If $I \subseteq \mathbb{Z}$ is an ideal, and $a \in I$ is its smallest positive element, then I = (a).

Proof

Pick any positive $b \in I$. Write b = aq + r, for $q, r \in \mathbb{Z}$ and $0 \le r < a$.

Then $r = b - aq \in I$, so r = 0. Therefore, $b = qa \in (a)$.

Definition

A common divisor of $a, b \in R$ is an element $d \in R$ such that $d \mid a$ and $d \mid b$.

Moreover, d is a greatest common divisor (GCD) if $c \mid d$ for all other common divisors c of a and b.

A common multiple of $a, b \in R$ is an element $m \in R$ such that $a \mid m$ and $b \mid m$.

Moreover, m is a least common multiple (LCM) if $m \mid n$ for all other common multiples n of a and b.

Nice properties of PIDs

Proposition

If R is a PID, then any $a, b \in R^*$ have a GCD, $d = \gcd(a, b)$.

It is unique up to associates, and can be written as d = xa + yb for some $x, y \in R$.

Proof

 $\underline{Existence}$. The ideal generated by a and b is

$$I = (a, b) = \{ua + vb : u, v \in R\}.$$

Since R is a PID, we can write I = (d) for some $d \in I$, and so d = xa + yb.

Since $a, b \in (d)$, both $d \mid a$ and $d \mid b$ hold.

If c is a divisor of a & b, then $c \mid xa + yb = d$, so d is a GCD for a and b. \checkmark

Uniqueness. If d' is another GCD, then $d \mid d'$ and $d' \mid d$, so $d \sim d'$. \checkmark

Nice properties of PIDs

Corollary

If *R* is a PID, then every irreducible element is prime.

Proof

Let $p \in R$ be irreducible and suppose $p \mid ab$ for some $a, b \in R$.

If $p \nmid a$, then gcd(p, a) = 1, so we may write 1 = xa + yp for some $x, y \in R$. Thus

$$b = (xa + yp)b = x(ab) + (yb)p.$$

Since $p \mid x(ab)$ and $p \mid (yb)p$, then $p \mid x(ab) + (yb)p = b$.

Not surprisingly, least common multiples also have a nice characterization in PIDs.

Proposition (HW)

If R is a PID, then any $a, b \in R^*$ have an LCM, m = lcm(a, b).

It is *unique up to associates*, and can be characterized as a generator of the ideal $I := (a) \cap (b)$.

Unique factorization domains

Definition

An integral domain is a unique factorization domain (UFD) if:

- (i) Every nonzero element is a product of irreducible elements;
- (ii) Every irreducible element is prime.

Examples

1. \mathbb{Z} is a UFD: Every integer $n \in \mathbb{Z}$ can be uniquely factored as a product of irreducibles (primes):

$$n = p_1^{d_1} p_2^{d_2} \cdots p_k^{d_k}.$$

This is the fundamental theorem of arithmetic.

2. The ring $\mathbb{Z}[x]$ is a UFD, because every polynomial can be factored into irreducibles. But it is not a PID because the following ideal is not principal:

$$(2,x) = \{f(x) : \text{ the constant term is even}\}.$$

- 3. The ring R_{-5} is not a UFD because $9 = 3 \cdot 3 = (2 + \sqrt{-5})(2 \sqrt{-5})$.
- 4. We've shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.

Unique factorization domains

Theorem

If R is a PID, then R is a UFD.

Proof

We need to show Condition (i) holds: every element is a product of irreducibles. A ring is Noetherian if every ascending chain of ideals

$$\textit{I}_1 \subseteq \textit{I}_2 \subseteq \textit{I}_3 \subseteq \cdots$$

stabilizes, meaning that $I_k = I_{k+1} = I_{k+2} = \cdots$ holds for some k.

Suppose R is a PID. It is not hard to show that R is Noetherian (HW). Define

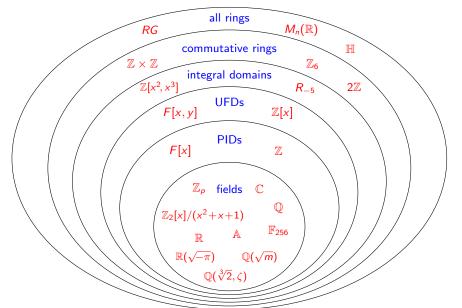
$$X = \{a \in R^* \setminus U(R) : a \text{ can't be written as a product of irreducibles}\}.$$

If $X \neq \emptyset$, then pick $a_1 \in X$. Factor this as $a_1 = a_2b$, where $a_2 \in X$ and $b \notin U(R)$. Then $(a_1) \subsetneq (a_2) \subsetneq R$, and repeat this process. We get an ascending chain

$$(a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots$$

that does not stabilize. This is impossible in a PID, so $X = \emptyset$.

Summary of ring types



The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the *Elements*, in which he described what is now known as the *Euclidean algorithm*:

Proposition VII.2 (Euclid's *Elements*)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

- If $a \mid b$, then gcd(a, b) = a;
- If a = bq + r, then gcd(a, b) = gcd(b, r).

This is best seen by an example: Let a = 654 and b = 360.

$$\begin{array}{lll} 654 = 360 \cdot 1 + 294 & \gcd(654, 360) = \gcd(360, 294) \\ 360 = 294 \cdot 1 + 66 & \gcd(360, 294) = \gcd(294, 66) \\ 294 = 66 \cdot 4 + 30 & \gcd(294, 66) = \gcd(66, 30) \\ 66 = 30 \cdot 2 + 6 & \gcd(66, 30) = \gcd(30, 6) \\ 30 = 6 \cdot 5 & \gcd(30, 6) = 6. \end{array}$$

We conclude that gcd(654, 360) = 6.

Euclidean domains

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm still works.

Definition

An integral domain R is Euclidean if it has a degree function $d: R^* \to \mathbb{Z}$ satisfying:

- (i) non-negativity: $d(r) \ge 0 \quad \forall r \in R^*$.
- (ii) monotonicity: $d(a) \le d(ab)$ for all $a, b \in R^*$.
- (iii) division-with-remainder property: For all $a,b\in R,\ b\neq 0$, there are $q,r\in R$ such that

$$a = bq + r$$
 with $r = 0$ or $d(r) < d(b)$.

Note that Property (ii) could be restated to say: If $a \mid b$, then $d(a) \leq d(b)$;

Examples

- $R = \mathbb{Z}$ is Euclidean. Define d(r) = |r|.
- \blacksquare R = F[x] is Euclidean if F is a field. Define $d(f(x)) = \deg f(x)$.
- The Gaussian integers $R_{-1} = \mathbb{Z}[\sqrt{-1}] = \{a + bi : a, b \in \mathbb{Z}\}$ is Euclidean with degree function $d(a + bi) = a^2 + b^2$.

Euclidean domains

Proposition

If R is Euclidean, then $U(R) = \{x \in R^* : d(x) = d(1)\}.$

Proof

 \subseteq ": First, we'll show that associates have the same degree. Take $a \sim b$ in R^* :

$$egin{array}{lll} a \mid b & \Longrightarrow & d(a) \leq d(b) \\ b \mid a & \Longrightarrow & d(b) \leq d(a) \end{array} & \Longrightarrow & d(a) = d(b). \end{array}$$

If $u \in U(R)$, then $u \sim 1$, and so d(u) = d(1). \checkmark

"\(\text{\text{\$\geq}}\)": Suppose $x \in R^*$ and d(x) = d(1).

Then 1 = qx + r for some $q \in R$ with either r = 0 or d(r) < d(x) = d(1).

If $r \neq 0$, then $d(1) \leq d(r)$ since $1 \mid r$.

Thus, r = 0, and so qx = 1, hence $x \in U(R)$. \checkmark

Euclidean domains

Proposition

If R is Euclidean, then R is a PID.

Proof

Let $I \neq 0$ be an ideal and pick some $b \in I$ with d(b) minimal.

Pick $a \in I$, and write a = bq + r with either r = 0, or d(r) < d(b).

This latter case is impossible: $r = a - bq \in I$, and by minimality, $d(b) \le d(r)$.

Therefore, r = 0, which means $a = bq \in (b)$. Since a was arbitrary, I = (b).

Exercises.

- (i) The ideal $I = (3, 2 + \sqrt{-5})$ is not principal in R_{-5} .
- (ii) If R is an integral domain, then I = (x, y) is not principal in R[x, y].

Corollary

The rings R_{-5} (not a PID or UFD) and R[x, y] (not a PID) are not Euclidean.

Algebraic integers

The algebraic integers are the roots of *monic* polynomials in $\mathbb{Z}[x]$. This is a subring of the algebraic numbers (roots of all polynomials in $\mathbb{Z}[x]$).

Assume $m \in \mathbb{Z}$ is square-free with $m \neq 0, 1$. Recall the quadratic field

$$\mathbb{Q}(\sqrt{m}) = \left\{ p + q\sqrt{m} \mid p, q \in \mathbb{Q} \right\}.$$

Definition

The ring R_m is the set of algebraic integers in $\mathbb{Q}(\sqrt{m})$, i.e., the subring consisting of those numbers that are roots of monic quadratic polynomials $x^2 + cx + d \in \mathbb{Z}[x]$.

Facts

- \blacksquare R_m is an integral domain with 1.
- Since m is square-free, $m \not\equiv 0 \pmod{4}$. For the other three cases:

$$R_m = \left\{ \begin{array}{ll} \mathbb{Z}[\sqrt{m}] = \left\{ a + b\sqrt{m} : a, b \in \mathbb{Z} \right\} & m \equiv 2 \text{ or } 3 \pmod{4} \\ \\ \mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right] = \left\{ a + b\left(\frac{1+\sqrt{m}}{2}\right) : a, b \in \mathbb{Z} \right\} & m \equiv 1 \pmod{4} \end{array} \right.$$

- \blacksquare R_{-1} is the Gaussian integers, which is a PID. (easy)
- \blacksquare R_{-19} is a PID. (hard)

Algebraic integers

Definition

For $x = r + s\sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of x to be

$$N(x) = (r + s\sqrt{m})(r - s\sqrt{m}) = r^2 - ms^2.$$

 R_m is norm-Euclidean if it is a Euclidean domain with d(x) = |N(x)|.

Note that the norm is multiplicative: N(xy) = N(x)N(y).

Exercises

Assume $m \in \mathbb{Z}$ is square-free, with $m \neq 0, 1$.

- $u \in U(R_m) \text{ iff } |N(u)| = 1.$
- If $m \ge 2$, then $U(R_m)$ is infinite.
- $U(R_{-1}) = \{\pm 1, \pm i\} \text{ and } U(R_{-3}) = \{\pm 1, \pm \frac{1 \pm \sqrt{-3}}{2}\}.$
- If m = -2 or m < -3, then $U(R_m) = \{\pm 1\}$.

Euclidean domains and algebraic integers

Theorem

 R_m is norm-Euclidean iff

$$m \in \left\{-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\right\}.$$

Theorem (D.A. Clark, 1994)

The ring R_{69} is a Euclidean domain that is *not* norm-Euclidean.

Let $\alpha=(1+\sqrt{69})/2$ and c>25 be an integer. Then the following degree function works for R_{69} , defined on the prime elements:

$$d(p) = \begin{cases} |N(p)| & \text{if } p \neq 10 + 3\alpha \\ c & \text{if } p = 10 + 3\alpha \end{cases}$$

Theorem

If m < 0 and $m \notin \{-11, -7, -3, -2, -1\}$, then R_m is not Euclidean.

Open problem

Classify which R_m 's are PIDs, and which are Euclidean.

PIDs that are not Euclidean

Theorem

If m < 0, then R_m is a PID iff

$$m \in \{\underbrace{-1, -2, -3, -7, -11}_{\text{Euclidean}}, -19, -43, -67, -163\}.$$

Recall that R_m is norm-Euclidean iff

$$m \in \left\{-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\right\}.$$

Corollary

If m < 0, then R_m is a PID that is not Euclidean iff $m \in \{-19, -43, -67, -163\}$.

Algebraic integers

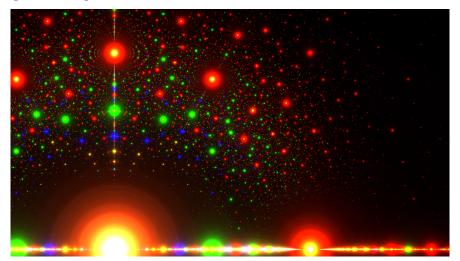


Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the leading term: red = 1 (algebraic integer), green = 2, blue = 3, yellow = 4. Large dots mean fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).

Algebraic integers

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic polynomial of degree ≤ 7 with coefficients from $\{0,\pm 1,\pm 2,\pm 3,\pm 4,\pm 5\}$. From Wikipedia.

Summary of ring types

