{{{id=1| P. = PolynomialRing(GF(2), 9, order ='lex'); P /// Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2 }}} {{{id=2| Le=1; Ge=1; print "Le =", Le; print "Ge =", Ge; /// Le = 1 Ge = 1 }}} {{{id=3| I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, x6+x3*x8, x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, x9+(Ge+1)*(Le+x8+Le*x8)); I /// Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 + x6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2 }}} {{{id=4| B = I.groebner_basis(); B /// [x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9] }}} {{{id=5| /// }}}