1. Carry out the steps outlined below for the following predator–prey model:

$$P_{t+1} = P_t(1 + .8(1 - P_t)) - 4P_tQ_t$$

$$Q_{t+1} = .9Q_t + 2P_tQ_t$$

- (a) Compute the equilbria.
- (b) Use MATLAB and the twopop program to make an informed guess as to whether the equilbria are stable or unstable. Print out and attach the phase portrait.
- (c) Linearize the model at each of the equilibria and compute eigenvalues to determine stability.
- 2. One approach to preventing disease spread is to simply quarantine infectives. Suppose a disease is modeled by the SIR model, but people who get the disease are health-conscience and quarantine themselves. The net result is that a fraction q of the infectives are prevented from having contacts with the susceptibles. Only 1-q of the infectives will be able to spread the disease.
 - (a) Modify the equations of the SIR model to reflect this. What value of q gives the usual SIR model?
 - (b) Quarantining can be viewed as a way of modifying the transmission coefficient. Suppose an SIR model has transmission coefficient α , and a fraction q of the infectives are successfully quarantined. Then the model with quarantining is identical to a standard SIR model with some other transmission coefficient α' , the effective transmission coefficient. Give a formula for α' in terms of α and q.
 - (c) Use the MATLAB program sir to investigate the behavior of your quarantine model for N = 100, $\alpha = 0.001$, and $\gamma = 0.05$, and vary q from 0 to 1. Explain the qualitative behavior you see. Can you find a value of q that prevents an epidemic from occurring, regardless of I_0 ? Estimate the smallest such q.
- 3. Another approach to preventing disease spread is vaccination of susceptibles. Suppose a public health organization offers a vaccine for a disease modeled by the SIR model. One simple model of this situation counts each successful vaccination in the removed class throughout the duration of the model.
 - (a) Suppose that all vaccinations occur before the time t = 0. Even if this is not the case, we may assume it is why?
 - (b) Suppose with N = 100, we have $I_0 = 1$, with the removed class composed of the fraction q of the population that was successfully vaccinated. Give formulas for S_0 and R_0 (the initial number of recovered people, *not* the basic reproductive number \mathcal{R}_0). What value of q gives the usual SIR model?
 - (c) Repeat Part (c) from the previous problem for this situation.

- 4. An isolated island population of 100 individuals is exposed to a particularly deadly disease; an infected individual remains contagious until overcome by death after 4 days. We want to predict the disease's effect on the community on a daily basis. Suppose initially one individual is stricken with the disease.
 - (a) What is the removal rate γ ?
 - (b) For what values of the relative removal rate $\rho := \gamma/\alpha$ will an epidemic occur? Use this to determine for what values of the transmission coefficient α an epidemic will occur.
 - (c) Use a computer program such as **sir** to estimate the number of days until the epidemic peaks for the values of $\alpha = .003$, .005, .01, and .0125, presenting your data in a table. How does the magnitude of α relate to the time until the peak?
 - (d) Calculate the basic reproductive numbers and the relative remove rates ρ for the values of α above, adding that information to your table.
- 5. The following difference equation is called the SIS model:

$$\Delta S = -\alpha SI + \gamma I$$

$$\Delta I = \alpha SI - \gamma I.$$

- (a) What disease might be modeled well by the SIS framework?
- (b) Use a computer program such as **sir** or **twopop** to explore the dynamics of the SIS model. Vary the parameters α , γ , N, S_0 , and I_0 . Describe your findings.
- (c) Solve for all equilibria (S^*, I^*) . Are these biologically reasonable? An equilibrium $I^* > 0$ is called an *endemic equilibrium*. Can an SIS disease be endemic?
- (d) Since $S_t + I_t = N$ is constant, substitute $I_t = N S_t$ back into the formula for S_t and find a formula for S_{t+1} in terms of S_t . Find a formula for I_{t+1} in terms of I_t .
- (e) For the SIR model, the threshold value $\rho := \gamma/\alpha$, called the *relative remove rate*, plays an important role. What does it represent? Is there an analogous threshold value for the SIS model? If so, find it. If not, explain why.
- (f) For the SIR model, the basic reproductive number \mathcal{R}_0 plays an important role. How should one define \mathcal{R}_0 for the SIS model? Justify your answer.