Boolean models of the *lac* operon in *E. coli*

Matthew Macauley Clemson University

Gene expression

- Gene expression is a process that takes gene info and creates a functional gene product (e.g., a protein).
- Some genes code for proteins. Others (e.g., rRNA, tRNA) code for functional RNA.
- Gene Expression is a 2-step process:
 - 1) transcription of genes (messenger RNA synthesis)
 - 2) translation of genes (protein synthesis)
- DNA consists of bases A, C, G, T.
- RNA consists of bases A, C, G, U.
- Proteins are long chains of amino acids.
- Gene expression is used by all known life forms.

Transcription

- Transcription occurs inside the cell nucleus.
- A helicase enzyme binds to and "unzips" DNA to read it.
- DNA is copied into mRNA.
- Segments of RNA not needed for protein coding are removed.
- The RNA then leaves the cell nucleus.

- During translation, the mRNA is read by ribosomes.
- Each triple of RNA bases codes for an amino acid.
- The result is a protein: a long chain of amino acids.
- Proteins fold into a 3-D shape which determine their function

Gene expression

- The expression level is the rate at which a gene is being expressed.
- Housekeeping genes are continuously expressed, as they are essential for basic life processes.
- Regulated genes are expressed only under certain outside factors (environmental, physiological, etc.). Expression is controlled by the cell.
- It is easiest to control gene regulation by affecting transcription.
- One way to block repression is for repressor proteins bind to the DNA or RNA.
- <u>Goal</u>: Understand the complex cell behaviors of gene regulation, which is the process of turning on/off certain genes depending on the requirements of the organism.

The lac operon in E. coli

- An operon is a region of DNA that contains a cluster of genes that are transcribed together.
- *E. coli* is a bacterium in the gut of mammals and birds. Its genome has been sequenced and its physiology is well-understood.
- The lactose (lac) operon controls the transport and metabolism of lactose in *Escherichia coli*.
- The *lac* operon was discovered by Francois Jacob and Jacques Monod in 1961, which earned them the Nobel Prize.
- The *lac* operon was the first operon discovered and is the most widely studied mechanism of gene regulation.
- The *lac* operon is used as a "test system" for models of gene regulation.
- DNA replication and gene expression were all studied in *E. coli* before they were studied in eukaryotic cells.

Lactose and β -galactosidase

- When a host consumes milk, *E. coli* is exposed to lactose (milk sugar).
- Lactose consists of one glucose sugar linked to one galactose sugar.
- If both glucose and lactose are available, then glucose is the preferred energy source.
- Before lactose can used as energy, the β -galactosidase enzyme is needed to break it down.
- β –galactosidase is encoded by the LacZ gene on the lac operon.

Galactose

Transporter protein

- To bring lactose into the cell, a transport protein, called *lac* permease, is required.
- This protein is encoded by the LacY gene on the *lac* operon.
- If lactose is not present, then neither of the following are produced:
 - 1) β -galactosidase (LacZ gene)
 - 2) *lac* permease (LacY gene)
- In this case, the *lac* operon is OFF.

The lac operon

with lactose and no gluclose

- Lactose is brought into the cell by the *lac* permease transporter protein
- β –galactosidase breaks up lactose into glucose and galactose..
- β –galactosidase also converts lactose into allolactose.
- Allolactose binds to the *lac* repressor protein, preventing it from binding to the operator region of the genome.
- Transcription begins: mRNA encoding the *lac* genes is produced.
- Lac proteins are produced, and more lactose is brought into the cell. (The operon is ON.)
- Eventually, all lactose is used up, so there will be no more allolactose.
- The *lac* repressor can now bind to the operator, so mRNA transcription stops. (The operon has turned itself OFF.)

An ODE lac operon model

- M: mRNA
- B: β –galactosidase
- A: allolactose
- P: transporter protein
- L: lactose

$$\begin{aligned} \frac{dM}{dt} &= \alpha_M \frac{1 + K_1 \left(e^{-\mu\tau_M} A_{\tau_M}\right)^n}{K + K_1 \left(e^{-\mu\tau_M} A_{\tau_M}\right)^n} + \Gamma_0 - \widetilde{\gamma_M} M \\ \frac{dB}{dt} &= \alpha_B e^{-\mu\tau_B} M_{\tau_B} - \widetilde{\gamma_B} B \\ \frac{dA}{dt} &= \alpha_A B \frac{L}{K_L + L} - \beta_A B \frac{A}{K_A + A} - \widetilde{\gamma_A} A \\ \frac{dP}{dt} &= \alpha_P e^{-\mu(\tau_B + \tau_P)} M_{\tau_B + \tau_P} - \widetilde{\gamma_P} P \\ \frac{dL}{dt} &= \alpha_L P \frac{L_e}{K_{L_e} + L_e} - \beta_{L_1} P \frac{L}{K_{L_1} + L} - \alpha_A B \frac{L}{K_L + L} - \widetilde{\gamma_L} L \end{aligned}$$

Downsides of an ODE model

- Very mathematically advanced.
- Too hard to solve explicitly. Numerical methods are needed.
- MANY experimentally determined "rate constants" (I count 18...)
- Often, these rate constants aren't known even up to orders of magnitude.

$$\begin{aligned} \frac{dM}{dt} &= \alpha_M \frac{1 + K_1 \left(e^{-\mu \tau_M} A_{\tau_M} \right)^n}{K + K_1 \left(e^{-\mu \tau_M} A_{\tau_M} \right)^n} + \Gamma_0 - \widetilde{\gamma_M} M \\ \frac{dB}{dt} &= \alpha_B e^{-\mu \tau_B} M_{\tau_B} - \widetilde{\gamma_B} B \\ \frac{dA}{dt} &= \alpha_A B \frac{L}{K_L + L} - \beta_A B \frac{A}{K_A + A} - \widetilde{\gamma_A} A \\ \frac{dP}{dt} &= \alpha_P e^{-\mu (\tau_B + \tau_P)} M_{\tau_B + \tau_P} - \widetilde{\gamma_P} P \\ \frac{dL}{dt} &= \alpha_L P \frac{L_e}{K_{L_e} + L_e} - \beta_{L_1} P \frac{L}{K_{L_1} + L} - \alpha_A B \frac{L}{K_L + L} - \widetilde{\gamma_L} L \end{aligned}$$

A Boolean approach

- Let's assume everything is "Boolean" (0 or 1):
 - o Gene products are either present or absent
 - Enzyme concentrations are either high or low.
 - The operon is either ON or OFF.

 mRNA is transcribed (M=1) if there is no external glucose (G=0), and either internal lactose (L=1) or external lactose (L_e=1) are present.

$$x_M(t+1) = f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e)$$

The LacY and LacZ gene products (E=1) will be produced if mRNA is available (M=1).

 $x_E(t+1) = f_E(t+1) = M(t)$

- Lactose will be present in the cell if there is no external glucose ($G_e=0$), and either of the following holds:
 - ✓ External lactose is present (L_e =1) and *lac* permease (E=1) is available.
 - ✓ Internal lactose is present (L=1), but β –galactosidase is absent (E=0).

$$x_{L}(t+1) = f_{L}(t+1) = \overline{G_{e}} \wedge \left[(L_{e} \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right]$$

Comments on the Boolean model

- We have two "types" of Boolean quantities:
 - o mRNA (M), lac gene products (E), and internal lactose (L) are variables.
 - External glucose (G_e) and lactose (L_e) are parameters (constants).
- Variables and parameters are drawn as nodes.
- Interactions can be drawn as signed edges.
- A signed graph called the wiring diagram describes the dependencies of the variables.
- Time is discrete: t = 0, 1, 2,

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$$

Assume that the variables are updated synchronously.

How to analyze a Boolean model

- At the bare minimum, we should expect:
 - Lactose absent => operon OFF.
 - Lactose present, glucose absent => operon ON.
 - Lactose and glucose present => operon OFF.

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \Big[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \Big] \end{aligned}$$

- The state space (or phase space) is the directed graph (V, T), where $V = \left\{ (x_M, x_E, x_L) : x_i \in \{0, 1\} \right\} \qquad T = \left\{ (x, f(x)) : x \in V \right\}$
- We'll draw the state space for all four choices of the parameters:
 - o $(L_e, G_e) = (0, 0)$. We hope to end up in a fixed point (0,0,0).
 - o $(L_e, G_e) = (0, 1)$. We hope to end up in a fixed point (0,0,0).
 - o $(L_e, G_e) = (1, 0)$. We hope to end up in a fixed point (1,1,1).
 - o $(L_e, G_e) = (1, 1)$. We hope to end up in a fixed point (0,0,0).

How to analyze a Boolean model

- We can plot the state space using the software: Analysis of Dynamical Algebraic Models (ADAM), at adam.plantsimlab.org.
- First, we need to convert our logical functions into polynomials.

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$$

• Here is the relationship between Boolean logic and polynomial algebra:

Boolea	an operations	logical form	<u>polynomial form</u>
o AND		$z = x \land y$	z = xy
o OR		$z = x \lor y$	z = x + y + xy
o NOT		$z = \overline{x}$	z = 1 + x

Also, everything is done modulo 2, so 1+1=0, and $x^2=x$, and thus x(x+1)=0.

VIRGINIA BIOINFORMATICS INSTITUTE WV VIRGINIA BIOINFORMATICS INSTITUTE WV VIRGINIA TECH

Analysis of Dynamic Algebraic Models (ADAM) v1.1

$$x_{M}(t+1) = f_{M}(t+1) = G_{e} \wedge (L(t) \vee L_{e})$$
$$x_{E}(t+1) = f_{E}(t+1) = M(t)$$

Model Input:

$$x_{L}(t+1) = f_{L}(t+1) = \overline{G_{e}} \wedge \left[(L_{e} \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right]$$

Upload a file (.txt) for the polynomials \mathcal{X}_L corresponding to the system OR enter them directly into the text area:

SELECT FILES

f1 = (1+Ge)*(x3*Le+x3+Le) f2 = x1 f3 = (1+Ge)*(x2*Le+x3*(1+x2))

4)

What analysis would you like to run?

• Simulation of all trajectories (< 20 nodes)

VIRGINIA BIOINFORMATICS INSTITUTE WV VIRGINIA BIOINFORMATICS INSTITUTE WV VIRGINIA TECH

Analysis of Dynamic Algebraic Models (ADAM) v1.1

$$x_{M}(t+1) = f_{M}(t+1) = G_{e} \wedge (L(t) \vee L_{e})$$

$$x_{E}(t+1) = f_{E}(t+1) = M(t)$$

State space when $(G_e, L_e) = (0, 1)$. The operon is ON.

VIRGINIA BIOINFORMATICS INSTITUTE WV VIRGINIA BIOINFORMATICS INSTITUTE WV VIRGINIA TECH

Analysis of Dynamic Algebraic Models (ADAM) v1.1

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$$

State space when $(G_e, L_e) = (0, 0)$.

The operon is OFF.

VIRGINIA BIOINFORMATICS INSTITUTE WV VIRGINIA BIOINFORMATICS

Analysis of Dynamic Algebraic Models (ADAM) v1.1

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = G_e \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$$

State space when $(G_e, L_e) = (1, 0)$. The operon is OFF.

VIRGINIA BIOINFORMATICS INSTITUTE

Analysis of Dynamic Algebraic Models (ADAM) v1.1

$$\begin{aligned} x_M(t+1) &= f_M(t+1) = \overline{G_e} \wedge (L(t) \vee L_e) \\ x_E(t+1) &= f_E(t+1) = M(t) \\ x_L(t+1) &= f_L(t+1) = \overline{G_e} \wedge \left[(L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right] \end{aligned}$$

State space when $(G_e, L_e) = (1, 1)$. The operon is OFF.

Summary so far

- Gene regulatory networks consist of a collection of gene products that interact with each other to control a specific cell function.
- Classically, these have been modeled quantitatively with differential equations (continuous models).
- Boolean networks take a different approach. They are discrete models that are inherently qualitative.
- The state space graph encodes all of the dynamics. The most important features are the fixed points, and a necessary step in model validation is to check that they are biologically meaningful.
- The model of the *lac* operon shown here is a "toy model". Next, we will see more complicated models of the *lac* operon that capture intricate biological features of these systems.
- Modeling with Boolean logic is a relatively new concept, first done in the 1970s. It is a popular research topic in the field of systems biology.

A more refined model

• Our model only used 3 variables: mRNA (M), enzymes (E), and lactose (L).

- Let's propose a new model with 5 variables:
 - M: mRNA
 - B: β –galactosidase
 - A: allolactose
 - L: intracellular lactose
 - P: *lac* permease (transporter protein)
- Assumptions
 - Translation and transcription require one unit of time.
 - Protein and mRNA degradation require one unit of time
 - Lactose metabolism require one unit of time
 - Extracellular lactose is always available.
 - Extracellular glucose is always unavailable.

 $f_{M} = A$ $f_{B} = M$ $f_{A} = A \lor (L \land B)$ $f_{L} = P \lor (L \land \overline{B})$ $f_{P} = M$

Using ADAM to compute the state space

Problems with our refined model

- Model variables:
 - M: mRNA
 - B: β -galactosidase
 - A: allolactose
 - L: intracellular lactose
 - P: *lac* permease (transporter protein)

 $f_{M} = A$ $f_{B} = M$ $f_{A} = A \lor (L \land B)$ $f_{L} = P \lor (L \land \overline{B})$ $f_{P} = M$

• Problems:

- The fixed point (M,B,A,L,P) = (0,0,0,0,0) should not happen with lactose present but not glucose. [though let's try to justify this...]
- The fixed point (M,B,A,L,P) = (0,0,0,1,0) is not biologically feasible: it would describe a scenario where the bacterium does not metabolize intracellular lactose.
- <u>Conclusion</u>: The model fails the initial testing and validation, and is in need of modification. (Homework!)

Catabolite repression

- We haven't yet discussed the cellular mechanism that turns the *lac* operon OFF when both glucose and lactose are present. This is done by catabolite repression.
- The *lac* operon promoter region has 2 binding sites:
 - One for RNA polymerase (this "unzips" and reads the DNA)
 - One for the CAP-cAMP complex. This is a complex of two molecules: catabolite activator protein (CAP), and the cyclic AMP receptor protein (cAMP, or *crp*).
- Binding of the CAP-cAMP complex is required for transcription for the *lac* operon.
- Intracellular glucose causes the cAMP concentration to decrease.
- When cAMP levels get too low, so do CAP-cAMP complex levels.
- Without the CAP-cAMP complex, the promoter is inactivated, and the *lac* operon is OFF.

Lac operon gene regulatory network

A more refined model

C

R

- Variables:
 - M: mRNA
 - P: *lac* permease
 - B: β-galactosidase
 - C: catabolite activator protein (CAP)
 - R: repressor protein (Lacl)
 - A: allolactose
 - A_m: at least med. allolactose
 - L: intracellular lactose
 - L_m: at least med. levels of intracellular lactose
- Assumptions:
 - Transcription and translation require 1 unit of time.
 - Degradation of all mRNA and proteins occur in 1 time-step.
 - High levels of lactose or allolactose at any time *t* imply (at least) medium levels for the next time-step *t*+1.

A more refined model

- This 9-variable model is about as big as ADAM can render a state space.
- In fact, it doesn't work using the "Open Polynomial Dynamical System (oPDS)" option (variables + parameters).
- Instead, it works under "Polynomial Dynamical System (PDS)", if we manually enter numbers for the parameters.
- Here's a sample piece of the state space:

 $f_M = \overline{R} \wedge C$ $f_P = M$ $f_B = M$ $f_C = \overline{G_e}$ $f_R = \overline{A} \wedge \overline{A_m}$ $f_A = L \wedge B$ $f_{A_m} = A \lor L \lor L_m$ $f_L = \overline{G_e} \wedge P \wedge L_e$ $f_{L_{e}} = \overline{G_{e}} \wedge (L \vee L_{e})$

01100	010101101 01010110 01010111 0011010 00110101 0011011
	100101101 100101000 100101001
110101010	

What if the state space is too big?

- The previous 9-variable model is about as big as ADAM can handle.
- However, many gene regulatory networks are much bigger.
 - A Boolean network model (2006) of T helper cell differentiation has 23 nodes, and thus a state space of size 2²³ = 8,388,608.
 - A Boolean network model (2003) of the segment polarity genes in Drosophila melanogaster (fruit fly) has 60 nodes, and a state space of size 2⁶⁰ ≈1.15 × 10¹⁸.
 - There are many more examples...
- For these systems, we need to be able to analyze them without constructing the entire state space.
- Our first goals is to find the fixed points. This amounts to solving a system of equations: $\int f x$

$$\begin{cases} f_{x_1} = x_1 \\ f_{x_2} = x_2 \\ \vdots \\ f_{x_n} = x_n \end{cases}$$

$$f_{M} = \overline{R} \wedge C$$

$$f_{P} = M$$

$$f_{B} = M$$

$$f_{C} = \overline{G_{e}}$$

$$f_{R} = \overline{A} \wedge \overline{A_{m}}$$

$$f_{A} = L \wedge B$$

$$f_{A_{m}} = A \vee L \vee L_{m}$$

$$f_{L} = \overline{G_{e}} \wedge P \wedge L_{e}$$

$$f_{L_{m}} = \overline{G_{e}} \wedge (L \vee L_{e})$$

How to find the fixed points

• Let's rename variables: $(M, P, B, C, R, A, A_m, L, L_m) = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9)$

• Writing each function in polynomial form, and then $f_{x_i} = x_i$ for each i=1,...,9 yields the following system:

$$\begin{split} f_{M} &= \overline{R} \wedge C = M \\ f_{P} &= M = P \\ f_{B} &= M = B \\ f_{C} &= \overline{G_{e}} = C \\ f_{R} &= \overline{A} \wedge \overline{A_{m}} = R \\ f_{A} &= L \wedge B = A \\ f_{A_{m}} &= A \vee L \vee L_{m} = A_{m} \\ f_{L} &= \overline{G_{e}} \wedge P \wedge L_{e} = A_{m} \\ f_{L_{m}} &= \overline{G_{e}} \wedge (L \vee L_{e}) = L_{m} \end{split} \begin{cases} x_{1} + x_{4}x_{5} + x_{4} = 0 \\ x_{1} + x_{2} = 0 \\ x_{1} + x_{3} = 0 \\ x_{1} + x_{3} = 0 \\ x_{4} + (G_{e} + 1) = 0 \\ x_{5} + x_{6}x_{7} + x_{6} + x_{7} + 1 = 0 \\ x_{6} + x_{3}x_{8} = 0 \\ x_{6} + x_{7} + x_{8} + x_{9} + x_{8}x_{9} + x_{6}x_{8} + x_{6}x_{9} + x_{6}x_{8}x_{9} = 0 \\ x_{8} + x_{2}L_{e}(G_{e} + 1) = 0 \\ x_{9} + (G_{e} + 1)(x_{8} + x_{8}L_{e} + L_{e}) = 0 \end{split}$$

We need to solve this for all 4 combinations: $(G_e, L_e) = (0,0), (0,1), (1,0), (1,1)$

How to find the fixed points

- Let's first consider the case when $(G_e, L_e) = (1,1)$
- We can solve the system by typing the following commands into Sage (https://cloud.sagemath.com/), the free open-source mathematical software:

2	P. <x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P</x1,x2,x3,x4,x5,x6,x7,x8,x9>
3	Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
1	
5	Le=1;
5	
/ 0	print "Le =", Le;
0	
9	Le = 1
	Ge = 1
0	
1	$I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, x6+x3*x8, x6+x7+x6+x7+1) + (T_{2}+x6+x7+x6+x7+1) + (T_{2}+x6+x7+x7+x6+x7+x7+x6+x7+x7+x6+x7+x7+x6+x7+x6+x7+x6+x7+x6+x7+x6+x7+x6+x7+x6+x7+x6+x7+x6+x7+x6+x7+x6+x7+x6+x7+x7+x6+x7+x7+x6+x7+x7+x6+x7+x6+x7+x7+x6+x7+x7+x6+x7+x7+x6+x7+x7+x6+x7+x7+x7+x7+x7+x7+x7+x7+x7+x7+x7+x7+x7+$
	X6+X/+X8+X9+X8*X9+X6*X8+X6*X9+X6*X8*X9, X8+Le*(Ge+1)*X2, X9+(Ge+1)*(Le+X8+Le*X8)); 1
2	Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 +
	x6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
	x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
3	
-	
4	<pre>B = I.groebner_basis(); B</pre>

What those Sage commands mean

Let's go over what the following commands mean:

- P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2),9,order='lex');
 - Define P to be the polynomial ring over 9 variables, x1,...,x9.
 - GF(2)={0,1} because the coefficients are binary.
 - order='lex' specifies a monomial order. More on this later.
- Le=1; Ge=1; print "Le =", Le; print "Ge =", Ge;
 - This defines two constants $(G_e, L_e) = (1,1)$ and prints them.
- I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, x6+x3*x8, x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, x9+(Ge+1)*(Le+x8+Le*x8)); I
 - Defines I to be the ideal generated by those following 9 polynomials, i.e.,

$$I = \left\{ p_1 f_1 + \dots + p_k f_k : p_k \in P \right\}$$

- B = I.groebner_basis(); B
 - Define B to be the Gröbner basis of I w.r.t. the lex monomial order. (More on this later)

What does a Gröbner basis tell us?

The output of B = I.groebner_basis(); B is the following:

[x1, x2, x3, x4, x5+1, x6, x7, x8, x9]

This is short-hand for the following system of equations:

$$\left\{x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 + 1 = 0, x_6 = 0, x_7 = 0, x_8 = 0, x_9 = 0\right\}$$

This simple system has the same set of solutions as the much more complicated system we started with:

$$\begin{aligned} x_1 + x_4 x_5 + x_4 &= 0 \\ x_1 + x_2 &= 0 \\ x_1 + x_3 &= 0 \\ x_4 + (G_e + 1) &= 0 \\ x_5 + x_6 x_7 + x_6 + x_7 + 1 &= 0 \\ x_6 + x_3 x_8 &= 0 \\ x_6 + x_7 + x_8 + x_9 + x_8 x_9 + x_6 x_8 + x_6 x_9 + x_6 x_8 x_9 &= 0 \\ x_8 + x_2 L_e (G_e + 1) &= 0 \\ x_9 + (G_e + 1)(x_8 + x_8 L_e + L_e) &= 0 \end{aligned}$$

Gröbner bases vs. Gaussian elimination

- ♦ Gröbner bases are a generalization of Gaussian elimination, but for systems of polynomials (instead of systems of linear equations)
- \diamond In both cases:
 - The input is a complicated system that we wish to solve.
 - The output is a simple system that we can easily solve by inspection.
- ♦ Consider the following example:
 - Input: The 2x2 system of linear equations

$$x + 2y = 1$$
$$3x + 8y = 1$$

Gaussian elimination yields the following:

$$\begin{bmatrix} 1 & 2 & | & 1 \\ 3 & 8 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & | & 1 \\ 0 & 2 & | & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 2 & | & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & -1 \end{bmatrix}$$

 This is just the much simpler system with the same solution! x + 0y = 30x + y = -1

Back-substitution & Gaussian elimination

We don't necessarily need to do Gaussian elimination until the matrix is the identity. As long as it is upper-triangular, we can back-substitute and solve by hand.

$$\Rightarrow \text{ For example:} \begin{cases} x + z = 2 \\ y - z = 8 \\ 0 = 0 \end{cases}$$

- Similarly, when Sage outputs a Gröbner basis, it will be in "upper-triangular form", and we can solve the system easily by back-substituting.
- We'll do an example right away. For this part of the class, you can think of Gröbner bases as a mysterious "black box" that does what we want.
- We'll study them in more detail shortly, and understand what's going on behind the scenes.

Gröbner bases: an example

♦ Let's use Sage to solve the following system:

$$x^{2} + y^{2} + z^{2} = 1$$
$$x^{2} - y + z^{2} = 0$$
$$x - z = 0$$

17	P. <x,y,z>=PolynomialRing(RR,3,order='lex'); P</x,y,z>
18	Multivariate Polynomial Ring in x, y, z over Real Field with 53 bits of precision
19 20 21	<pre>I = ideal(x²+y²+z²-1, x²-y+z², x-z); I Ideal (x² + y² + z² - 1.000000000000, x² - y + z², x - z) of Multivariate Polynomial Ring in x, y, z over Real Field with 53 bits of precision</pre>
22 23 24	<pre>B = I.groebner_basis(); B [x - z, y - 2.00000000000*z^2, z^4 + 0.500000000000*z^2 - 0.25000000000000]</pre>
	From this, we get an "upper-triangular" system: This is something we can solve by hand. $\begin{cases} x - z = 0 \\ y - 2z^2 = 0 \\ z^4 + .5z^225 = 0 \end{cases}$

Gröbner bases: an example (cont.)

1 [_

 \diamond To solve the reduced system:

$$z = \pm \sqrt{\frac{-1 \pm \sqrt{5}}{4}}$$

Plug z into Eq. 2 and solve for y:
$$y = 2z^2 = \frac{-1 + \sqrt{5}}{2}$$

Plug y & z into Eq. 1 and solve for x:
$$x = z = \pm \sqrt{x}$$

 \diamond Thus, we get 2 solutions to the original system:

$$x^{2} + y^{2} + z^{2} = 1$$
$$x^{2} - y + z^{2} = 0$$
$$x - z = 0$$

x - z = 0 $y - 2z^{2} = 0$ $z^{4} + .5z^{2} - .25 = 0$

$$(x_1, y_1, z_1) = \left(\sqrt{\frac{-1+\sqrt{5}}{4}}, \frac{-1+\sqrt{5}}{2}, \sqrt{\frac{-1+\sqrt{5}}{4}}\right) \qquad (x_2, y_2, z_2) = \left(-\sqrt{\frac{-1+\sqrt{5}}{4}}, \frac{-1+\sqrt{5}}{2}, -\sqrt{\frac{-1+\sqrt{5}}{4}}\right)$$

• We have 9 variables: $(M, P, B, C, R, A, A_m, L, L_m) = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9)$

• Writing each function in polynomial form, we need to solve the system $f_{x_i} = x_i$ for each i=1,...,9, which is the following:

$$\begin{split} f_{M} &= \overline{R} \wedge C = M \\ f_{P} &= M = P \\ f_{B} &= M = B \\ f_{C} &= \overline{G_{e}} = C \\ f_{R} &= \overline{A} \wedge \overline{A_{m}} = R \\ f_{A} &= L \wedge B = A \\ f_{A_{m}} &= A \vee L \vee L_{m} = A_{m} \\ f_{L} &= \overline{G_{e}} \wedge P \wedge L_{e} = A_{m} \\ f_{L_{m}} &= \overline{G_{e}} \wedge (L \vee L_{e}) = L_{m} \end{split} \begin{cases} x_{1} + x_{4}x_{5} + x_{4} = 0 \\ x_{1} + x_{2} = 0 \\ x_{1} + x_{3} = 0 \\ x_{1} + x_{3} = 0 \\ x_{4} + (G_{e} + 1) = 0 \\ x_{5} + x_{6}x_{7} + x_{6} + x_{7} + 1 = 0 \\ x_{6} + x_{3}x_{8} = 0 \\ x_{6} + x_{7} + x_{8} + x_{9} + x_{8}x_{9} + x_{6}x_{8} + x_{6}x_{9} + x_{6}x_{8}x_{9} = 0 \\ x_{8} + x_{2}L_{e}(G_{e} + 1) = 0 \\ x_{9} + (G_{e} + 1)(x_{8} + x_{8}L_{e} + L_{e}) = 0 \end{split}$$

We need to solve this for all 4 combinations: $(G_e, L_e) = (0,0), (0,1), (1,0), (1,1)$ (we already did (1,1)).

• Again, we use variables $(M, P, B, C, R, A, A_m, L, L_m) = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9)$

and parameters $(G_e, L_e) = (0, 0)$

• Here is the output from Sage:

```
1
   P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order = 'lex'); P
2
3
       Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
4
5
   Le=0;
   Ge=0;
   print "Le =", Le;
   print "Ge =", Ge;
9
       Le = 0
       Ge = 0
10
11
    I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, x6+x3*x8,
   x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, x9+(Ge+1)*(Le+x8+Le*x8)); I
       Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4 + 1, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 +
12
       x6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x8 + x9) of Multivariate Polynomial Ring in x1, x2
       , x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
13
14
   B = I.groebner basis(); B
15
       [x1, x2, x3, x4 + 1, x5 + 1, x6, x7, x8, x9]
       (M, P, B, C, R, A, A_m, L, L_m) = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9) = (0, 0, 0, 1, 1, 0, 0, 0, 0)
```

• Again, we use variables $(M, P, B, C, R, A, A_m, L, L_m) = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9)$

and parameters $(G_e, L_e) = (1, 0)$

Here is the output from Sage:

```
1
   P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P
 2
       Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
 3
 4
    Le=0;
 5
    Ge=1;
    print "Le =", Le;
    print "Ge =", Ge;
 8
 9
       Le = 0
       Ge = 1
10
11
    I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, x6+x3*x8, x4+(Ge+1))
    x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, x9+(Ge+1)*(Le+x8+Le*x8)); I
       Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 +
12
        x6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
        x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
13
14
    B = I.groebner basis(); B
15
       [x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9]
      (M, P, B, C, R, A, A_m, L, L_m) = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9) = (0, 0, 0, 0, 1, 0, 0, 0, 0)
```

- Again, we use variables $(M, P, B, C, R, A, A_m, L, L_m) = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9)$ and parameters $(G_e, L_e) = (0, 1)$
- Here is the output from Sage:

1	$P < u^2 + u^2 + u^2 + u^2 + u^2 + v^2 + Polymomial Ping(CE(2)) = 0$ and $n = low() \in P$
2	$P_{x1,x2,x3,x4,x5,x6,x7,x8,x9} = PolynomialRing(GF(2), 9, order = 1ex); P$
3	Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
4	
5	Le=0;
6	Ge=1;
7	print "Le =", Le;
9	
9	Ge = 1
10	
11	<pre>I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, x6+x3*x8, x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, x9+(Ge+1)*(Le+x8+Le*x8)); I</pre>
12	Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 + x6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
13	
14	<pre>B = I.groebner_basis(); B</pre>
15	[x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9]
	$(M, P, B, C, R, A, A_m, L, L_m) = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9) = (1, 1, 1, 1, 0, 1, 1, 1, 1)$

Fixed point analysis of the lac operon Using the variables $(M,P,B,C,R,A,A_m,L,L_m) = (x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9)$ we got the following fixed points for each choice of parameters (G_e, L_e)

- Input: $(G_e, L_e) = (0, 0)$ Fixed point: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9) = (0, 0, 0, 1, 1, 0, 0, 0, 0)$
- Input: $(G_e, L_e) = (1, 0)$ Fixed point: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9) = (0, 0, 0, 0, 1, 0, 0, 0, 0)$
- Input: $(G_e, L_e) = (1,1)$ Fixed point: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9) = (0,0,0,0,1,0,0,0,0)$
- Input: $(G_e, L_e) = (0,1)$

Fixed point: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9) = (1, 1, 1, 1, 0, 1, 1, 1, 1)$

All of these fixed points make biological sense!