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Gene expression 
�  Gene expression is a process that takes gene info and creates a functional 

gene product (e.g., a protein). 

�  Some genes code for proteins. Others (e.g., rRNA, tRNA) code for functional 
RNA. 

�  Gene Expression is a 2-step process: 
1)  transcription of  genes (messenger RNA synthesis) 

2)  translation of  genes (protein synthesis) 

�  DNA consists of  bases A, C, G, T. 

�  RNA consists of  bases A, C, G, U. 

�  Proteins are long chains of  amino acids. 

�  Gene expression is used by all known life forms.  
 



Transcription 

•  Transcription occurs inside the cell nucleus. 
•  A helicase enzyme binds to and “unzips” DNA to read it.  
•  DNA is copied into mRNA. 
•  Segments of  RNA not needed for protein coding are removed. 
•  The RNA then leaves the cell nucleus.  
 



Translation 

•  During translation, the mRNA is read by ribosomes.  
•  Each triple of  RNA bases codes for an amino acid. 
•  The result is a protein: a long chain of  amino acids. 
•  Proteins fold into a 3-D shape which determine their function 



Gene expression 
�  The expression level is the rate at which a gene is being expressed.  

�  Housekeeping genes are continuously expressed, as they are 
essential for basic life processes. 

�  Regulated genes are expressed only under certain outside factors 
(environmental, physiological, etc.). Expression is controlled by the 
cell.  

�  It is easiest to control gene regulation by affecting transcription.  

�  One way to block repression is for repressor proteins bind to the DNA 
or RNA.  

�  Goal: Understand the complex cell behaviors of  gene regulation, 
which is the process of  turning on/off  certain genes depending on 
the requirements of  the organism.  



The lac operon in E. coli 
�  An operon is a region of  DNA that contains a cluster of  genes that are 

transcribed together. 

�  E. coli is a bacterium in the gut of  mammals and birds. Its genome has been 
sequenced and its physiology is well-understood. 

�  The lactose (lac) operon controls the transport and metabolism of  lactose in 
Escherichia coli. 

�  The lac operon was discovered by Francois Jacob and Jacques Monod in 
1961, which earned them the Nobel Prize. 

�  The lac operon was the first operon discovered and is the most widely studied 
mechanism of  gene regulation. 

�  The lac operon is used as a “test system” for models of  gene regulation.  

�  DNA replication and gene expression were all studied in E. coli before they 
were studied in eukaryotic cells.  



Lactose and β−galactosidase 
�  When a host consumes milk, E. coli is exposed to lactose (milk sugar). 

�  Lactose consists of  one glucose sugar linked to one galactose sugar. 

�  If  both glucose and lactose are available, then glucose is the preferred energy 
source. 

�  Before lactose can used as energy, the β−galactosidase enzyme is needed to 
break it down.  

�  β−galactosidase is encoded by the LacZ gene on the lac operon. 

�  β−galactosidase also catalyzes lactose into allolactose.  



Transporter protein 
�  To bring lactose into the cell, a transport protein, called lac permease, is 

required. 

�  This protein is encoded by the LacY gene on the lac operon. 

�  If  lactose is not present, then neither of  the following are produced: 
1)  β−galactosidase (LacZ gene) 

2)   lac permease (LacY gene) 

�  In this case, the lac operon is OFF. 



The lac operon 



with lactose and no gluclose 

�  Lactose is brought into the cell by the lac permease transporter protein 

�  β−galactosidase breaks up lactose into glucose and galactose.. 

�  β−galactosidase also converts lactose into allolactose. 

�  Allolactose binds to the lac repressor protein, preventing it from binding to 
the operator region of  the genome. 

�  Transcription begins: mRNA encoding the lac genes is produced. 

�  Lac proteins are produced, and more lactose is brought into the cell. (The 
operon is ON.) 

�  Eventually, all lactose is used up, so there will be no more allolactose. 

�  The lac repressor can now bind to the operator, so mRNA transcription stops. 
(The operon has turned itself  OFF.)  



An ODE lac operon model 
�  M:  mRNA 

�  B:  β−galactosidase  

�  A:  allolactose 

�  P:  transporter protein 

�  L:  lactose 



Downsides of  an ODE model 
�  Very mathematically advanced. 

�  Too hard to solve explicitly. Numerical methods are needed.  

�  MANY experimentally determined “rate constants” (I count 18…) 

�  Often, these rate constants aren’t known even up to orders of  magnitude.  

 



A Boolean approach 
�  Let’s assume everything is “Boolean” (0 or 1): 

o  Gene products are either present or absent 

o  Enzyme concentrations are either high or low. 

o  The operon is either ON or OFF.  

�  mRNA is transcribed (M=1) if  there is no external glucose (G=0), and either 
internal lactose (L=1) or external lactose (Le=1) are present. 

 

�  The LacY and LacZ gene products (E=1) will be produced if  mRNA is 
available (M=1).  
 

�  Lactose will be present in the cell if  there is no external glucose (Ge=0), 
and either of  the following holds: 

ü  External lactose is present (Le=1) and lac permease (E=1) is available. 

ü  Internal lactose is present (L=1), but β−galactosidase is absent (E=0). 

 

 

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )

xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))⎡
⎣

⎤
⎦



Comments on the Boolean model 
�  We have two “types” of  Boolean quantities: 

o  mRNA (M), lac gene products (E), and internal lactose (L) are variables. 

o  External glucose (Ge) and lactose (Le) are parameters (constants).  

�  Variables and parameters are drawn as nodes. 

�  Interactions can be drawn as signed edges. 

�  A signed graph called the wiring diagram describes the 
dependencies of  the variables. 

�  Time is discrete: t = 0, 1, 2, …. 

�  Assume that the variables are updated synchronously.  

 

 

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))⎡
⎣

⎤
⎦



How to analyze a Boolean model 
�  At the bare minimum, we should expect: 

o  Lactose absent => operon OFF. 

o  Lactose present, glucose absent => operon ON. 

o  Lactose and glucose present => operon OFF.  

�  The state space (or phase space) is the directed graph (V, T), where   

�  We’ll draw the state space for all four choices of  the parameters: 

o  (Le, Ge) = (0, 0).  We hope to end up in a fixed point (0,0,0). 

o  (Le, Ge) = (0, 1).  We hope to end up in a fixed point (0,0,0). 

o  (Le, Ge) = (1, 0).  We hope to end up in a fixed point (1,1,1). 

o  (Le, Ge) = (1, 1).  We hope to end up in a fixed point (0,0,0). 

�  Assume that the variables are updated synchronously.  

 

 

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

T = (x, f (x)) : x ∈V{ }V = (xM , xE, xL ) : xi ∈ {0,1}{ }



How to analyze a Boolean model 
�  We can plot the state space using the software: Analysis of  Dynamical 

Algebraic Models (ADAM), at adam.plantsimlab.org. 

�  First, we need to convert our logical functions into polynomials.  

�  Here is the relationship between Boolean logic and polynomial algebra: 

          Boolean operations            logical form               polynomial form 

o  AND 

o  OR 

o  NOT 

•  Also, everything is done modulo 2, so 1+1=0, and x2=x, and thus x(x+1)=0. 

�  Assume that the variables are updated synchronously.  

 

 

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

z = x∧ y
z = x∨ y
z = x

z = xy
z = x + y+ xy
z =1+ x



xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&



xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (0, 1). The operon is ON. 



xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (0, 0).  
 
The operon is OFF. 



xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (1, 0). The operon is OFF. 



xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (1, 1). The operon is OFF. 



Summary so far 
�  Gene regulatory networks consist of  a collection of  gene products that 

interact with each other to control a specific cell function. 

�  Classically, these have been modeled quantitatively with differential equations 
(continuous models). 

�  Boolean networks take a different approach. They are discrete models that 
are inherently qualitative. 

�  The state space graph encodes all of  the dynamics. The most important 
features are the fixed points, and a necessary step in model validation is to 
check that they are biologically meaningful.  

�  The model of  the lac operon shown here is a “toy model”. Next, we will see 
more complicated models of  the lac operon that capture intricate biological 
features of  these systems. 

�  Modeling with Boolean logic is a relatively new concept, first done in the 
1970s. It is a popular research topic in the field of  systems biology.  

 

 

 



A more refined model 

�  Our model only used 3 variables: mRNA (M), enzymes (E), and lactose (L). 

�  Let’s propose a new model with 5 variables: 

�  M:  mRNA 

�  B:  β−galactosidase  

�  A:  allolactose 

�  L:  intracellular lactose 

�  P:  lac permease (transporter protein) 

�  Assumptions 
�  Translation and transcription require one unit of  time. 

�  Protein and mRNA degradation require one unit of  time 

�  Lactose metabolism require one unit of  time 

�  Extracellular lactose is always available. 

�  Extracellular glucose is always unavailable. 

fM = A
fB =M
fA = A∨(L∧B)

fL = P∨(L∧B)
fP =M



Using ADAM to compute the state space 
 fM = A

fB =M
fA = A∨(L∧B)

fL = P∨(L∧B)
fP =M



Problems with our refined model 

�  Model variables: 

�  M:  mRNA 

�  B:  β−galactosidase  

�  A:  allolactose 

�  L:  intracellular lactose 

�  P:  lac permease (transporter protein) 

�  Problems: 

�  The fixed point (M,B,A,L,P) = (0,0,0,0,0) should not happen with lactose 
present but not glucose. [though let’s try to justify this...] 

�  The fixed point (M,B,A,L,P) = (0,0,0,1,0) is not biologically feasible: it 
would describe a scenario where the bacterium does not metabolize 
intracellular lactose.  

�  Conclusion:  The model fails the initial testing and validation, and is in need of 
modification. (Homework!) 

fM = A
fB =M
fA = A∨(L∧B)

fL = P∨(L∧B)
fP =M



Catabolite repression 

�  We haven’t yet discussed the cellular mechanism that turns the lac operon 
OFF when both glucose and lactose are present. This is done by catabolite 
repression.  

�  The lac operon promoter region has 2 binding sites: 
�  One for RNA polymerase (this “unzips” and reads the DNA) 

�  One for the CAP-cAMP complex. This is a complex of  two molecules: catabolite 
activator protein (CAP), and the cyclic AMP receptor protein (cAMP, or crp). 

�  Binding of  the CAP-cAMP complex is required for transcription for the lac 
operon. 

�  Intracellular glucose causes the cAMP concentration to decrease.  

�  When cAMP levels get too low, so do CAP-cAMP complex levels.  

�  Without the CAP-cAMP complex, the promoter is inactivated, and the lac 
operon is OFF.  



Lac operon gene regulatory network 



A more refined model 
�  Variables: 

�  M:  mRNA 

�  P:  lac permease 

�  B:  β−galactosidase 

�  C:  catabolite activator protein (CAP) 

�  R:  repressor protein (LacI) 

�  A:  allolactose 

�  Am:  at least med. allolactose 

�  L:  intracellular lactose 

�  Lm:  at least med. levels of  intracellular lactose 

�  Assumptions: 

�  Transcription and translation require 1 unit of  time.  

�  Degradation of  all mRNA and proteins occur in 1 time-step. 

�  High levels of  lactose or allolactose at any time t imply (at least) medium 
levels for the next time-step t+1. 

fM = R∧C
fP =M
fB =M

fC =Ge

fR = A∧Am
fA = L∧B
fAm = A∨L∨Lm
fL =Ge ∧P∧Le
fLm =Ge ∧(L∨Le )



A more refined model 
�  This 9-variable model is about as big as ADAM can render a state 

space. 

�  In fact, it doesn’t work using the “Open Polynomial Dynamical 
System (oPDS)” option (variables + parameters). 

�  Instead, it works under “Polynomial Dynamical System (PDS)”, if  we 
manually enter numbers for the parameters.  

�  Here’s a sample piece of  the state space: 

fM = R∧C
fP =M
fB =M

fC =Ge

fR = A∧Am
fA = L∧B
fAm = A∨L∨Lm
fL =Ge ∧P∧Le
fLm =Ge ∧(L∨Le )



What if  the state space is too big? 
�  The previous 9-variable model is about as big as ADAM can handle. 

�  However, many gene regulatory networks are much bigger. 

�  A Boolean network model (2006) of  T helper cell differentiation 
has 23 nodes, and thus a state space of  size 223 = 8,388,608. 

�  A Boolean network model (2003) of  the segment polarity genes 
in Drosophila melanogaster (fruit fly) has 60 nodes, and a state 
space of  size 260 ≈1.15 × 1018. 

�  There are many more examples… 

�  For these systems, we need to be able to analyze them without 
constructing the entire state space.  

�  Our first goals is to find the fixed points. This amounts to solving a 
system of  equations: 

fM = R∧C
fP =M
fB =M

fC =Ge

fR = A∧Am
fA = L∧B
fAm = A∨L∨Lm
fL =Ge ∧P∧Le
fLm =Ge ∧(L∨Le )

fx 1 = x 1
fx 2 = x 2
!

fx n = x n

!

"

#
#

$

#
#



How to find the fixed points 
�  Let’s rename variables: 

�  Writing each function in polynomial form, and then                         for each i=1,…,9 
yields the following system: 

�  We need to solve this for all 4 combinations:  

fM = R∧C =M
fP =M = P
fB =M = B

fC =Ge =C

fR = A∧Am = R
fA = L∧B = A
fAm = A∨L∨Lm = Am
fL =Ge ∧P∧Le = Am
fLm =Ge ∧(L∨Le ) = Lm

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le ) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

fxi = xi

(Ge,Le ) = (0, 0), (0,1), (1, 0), (1,1)



How to find the fixed points 
�  Let’s first consider the case when  

�  We can solve the system by typing the following commands into Sage 
(https://cloud.sagemath.com/), the free open-source mathematical 
software: 

�    

(Ge,Le ) = (1,1)



What those Sage commands mean 
Let’s go over what the following commands mean: 

Ø  P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2),9,order=‘lex’);
§  Define P to be the polynomial ring over 9 variables, x1,…,x9. 

§  GF(2)={0,1} because the coefficients are binary.  

§  order=‘lex’ specifies a monomial order. More on this later.   

Ø  Le=1; Ge=1; print "Le =", Le; print "Ge =", Ge;
§  This defines two constants                             and prints them. 

Ø  I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, 
x6+x3*x8, x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, 
x9+(Ge+1)*(Le+x8+Le*x8)); I

§  Defines I to be the ideal generated by those following 9 polynomials, i.e.,  

 

Ø  B = I.groebner_basis(); B
§  Define B to be the Gröbner basis of  I w.r.t. the lex monomial order. (More on 

this later) 

 

(Ge,Le ) = (1,1)

I = p1 f1 +!+ pk fk : pk ∈ P{ }



What does a Gröbner basis tell us? 
The output of  B = I.groebner_basis(); B is the following: 

[x1, x2, x3, x4, x5+1, x6, x7, x8, x9] 

This is short-hand for the following system of  equations: 

 

This simple system has the same set of  solutions as the much more complicated system 
we started with:  

x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 +1= 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0{ }

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le ) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#



Gröbner bases vs. Gaussian elimination 
²  Gröbner bases are a generalization of  Gaussian elimination, but for 

systems of  polynomials (instead of  systems of  linear equations) 

²  In both cases: 
§  The input is a complicated system that we wish to solve.  

§  The output is a simple system that we can easily solve by inspection.  

²  Consider the following example: 
§  Input:  The 2x2 system of  linear equations 

  

§  Gaussian elimination yields the following: 

§  This is just the much simpler system  

     with the same solution!  

1 2
3 8

1
1

!

"
#
#

$

%
&
&
→ 1 2

0 2
1
−2

!

"
#
#

$

%
&
&
→ 1 0

0 2
3
−2

!

"
#
#

$

%
&
&
→ 1 0

0 1
3
−1

!

"
#
#

$

%
&
&

x + 2y =1
3x +8y =1

!
"
#

$#

x + 0y = 3
0x + y = −1

"
#
$

%$



Back-substitution & Gaussian elimination 

²  We don’t necessarily need to do Gaussian elimination until the matrix is 
the identity. As long as it is upper-triangular, we can back-substitute 
and solve by hand.  

²  For example:  

²  Similarly, when Sage outputs a Gröbner basis, it will be in “upper-triangular 
form”, and we can solve the system easily by back-substituting. 

²  We’ll do an example right away. For this part of  the class, you can think of  
Gröbner bases as a mysterious “black box” that does what we want. 

²  We’ll study them in more detail shortly, and understand what’s going on behind 
the scenes.  

 

x + z = 2
y− z = 8
0 = 0

"

#
$

%
$
$



Gröbner bases: an example 

²  Let’s use Sage to solve the following system: 

²  From this, we get an “upper-triangular” system:  

²  This is something we can solve by hand. 

 

 

x2 + y2 + z2 =1

x2 − y+z2 = 0
x − z = 0

"

#
$$

%
$
$

x − z = 0

y− 2z2 = 0

z4 + .5z2 −.25= 0

"

#
$$

%
$
$



Gröbner bases: an example (cont.) 

²  To solve the reduced system: 

 
§  Solve for z in Eq. 3: 

 

§  Plug z into Eq. 2 and solve for y: 

 

 

§  Plug y & z into Eq. 1 and solve for x: 

²  Thus, we get 2 solutions to the original system:  
 

x − z = 0

y− 2z2 = 0

z4 + .5z2 −.25= 0

"

#
$$

%
$
$z = ± −1+ 5

4

y = 2z2 = −1+ 5
2

x = z = ± −1+ 5
4 x2 + y2 + z2 =1

x2 − y+z2 = 0
x − z = 0

"

#
$$

%
$
$

(x1, y1, z1) =
−1+ 5
4

, −1+ 5
2

, −1+ 5
4

"

#
$
$

%

&
'
' (x2, y2, z2 ) = −

−1+ 5
4

, −1+ 5
2

,− −1+ 5
4

"

#
$
$

%

&
'
'



Returning to the lac operon 
�  We have 9 variables: 

�  Writing each function in polynomial form, we need to solve the system                     
for each i=1,…,9, which is the following: 

�  We need to solve this for all 4 combinations:                                                                     
(we already did (1,1)). 

fM = R∧C =M
fP =M = P
fB =M = B

fC =Ge =C

fR = A∧Am = R
fA = L∧B = A
fAm = A∨L∨Lm = Am
fL =Ge ∧P∧Le = Am
fLm =Ge ∧(L∨Le ) = Lm

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le ) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

fxi = xi

(Ge,Le ) = (0, 0), (0,1), (1, 0), (1,1)



Returning to the lac operon 
�  Again, we use variables                                                                                                        

       and parameters   

�  Here is the output from Sage: 

�    

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

(Ge,Le ) = (0, 0)

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0,1,1, 0, 0, 0, 0)



Returning to the lac operon 
�  Again, we use variables                                                                                                        

       and parameters   

�  Here is the output from Sage: 

�    

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

(Ge,Le ) = (1, 0)

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0, 0,1, 0, 0, 0, 0)



Returning to the lac operon 
�  Again, we use variables                                                                                                        

       and parameters   

�  Here is the output from Sage: 

�    

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

(Ge,Le ) = (0,1)

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (1,1,1,1, 0,1,1,1,1)



Fixed point analysis of  the lac operon 
Using the variables                                                                                                   

we got the following fixed points for each choice of  parameters   

�  Input:      

      Fixed point:  

�  Input:  

      Fixed point:    

�  Input:  

      Fixed point:       

�  Input:   

      Fixed point:  

All of  these fixed points make biological sense! 

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

(Ge,Le )

(x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (1,1,1,1, 0,1,1,1,1)

(Ge,Le ) = (0, 0)

(Ge,Le ) = (1, 0)

(Ge,Le ) = (1,1)

(Ge,Le ) = (0,1)

(x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0, 0,1, 0, 0, 0, 0)

(x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0,1,1, 0, 0, 0, 0)

(x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0, 0,1, 0, 0, 0, 0)


