Infinity Mon $8 / 27$
What do we mean by mfinity?
Number! Lives? Spue? Something else?
How does infinity arise in ant and architectwe?
Can we do math with infinity?

$$
\begin{aligned}
& \frac{1}{0}=\infty, \quad \frac{1}{0}=-\infty, \quad \frac{1}{\infty}=0, \quad \frac{0}{0}=? \\
& \infty+\infty=\infty, \quad \infty-\infty=? ? \quad \frac{\infty}{\infty}=?
\end{aligned}
$$

Bird example: 2 farmers plat 1 seed/day.
A bird eats one seed every 4 days.


How many seeds are left "at the end of time"?
Are all infinities the same "sse"? (what does this even mean?)
egg, $\mathbb{N}^{N}=\{1,2,3,4,5,6, \ldots\}$

$$
\begin{aligned}
2 \mathbb{N} & =\{2,4,6,8,10,12, \ldots\} \\
\mathbb{Z} & =\{\ldots,-2,-1,0,1,2, \ldots\} \\
\mathbb{Q} & =\left\{\frac{a}{b}: a, b \in \mathbb{Z}, \quad b \neq 0, \operatorname{gcd}(a, b)=1\right\} \\
\mathbb{R} & =\left\{\text { all real } H_{s}\right\}
\end{aligned}
$$

Hilbert's hotel:

$\therefore$ Vacancy ír | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Infinite luses arrive...

Poorf that $|\mathbb{N}|=|\mathbb{Q}|$



Proof that $|\mathbb{Q}|<|\mathbb{R}|$
Supase we calt order them:
Room 1 D.0835442863...
Roon 2 84. (四128879923.
Room 30.81781446312 "Cantor's diagone argument."
Room 4 8.2921313142
Roms 9.990 回012382
$2.2831 \ldots$ dosi't get a ram! (Why?)

Discuss the continuum hypothesis $\hat{i}$ Goidel's incompleteness theorem. Neat paradox: We can cover $\mathbb{Q}$ with intervals of total size 1 .

Review of domain, range, and limits wed $8 / 29$
Intuitively, $\lim _{x \rightarrow c} f(x)$ is "what $f(c)$ should be".
Recall cartier examples.

what is the domain?
Ans 1: $L \neq 0$, ie, $(-\infty, 0) \cup(0, \infty)$ ie, $L<0$ or $L>0$


Ans 2: $L>0$. [because $L<0$ is nonsensical] What is the range?

Ans 2: $f(L)>\overbrace{\text { I what we wat to find. }}^{\text {? }}$
 (well revisit this)

Ex 2: $\quad g(x)=x(60-2 x)=60 x-2 x^{2}$. $60-2 x$

Domain: $0<x<30$ or $(0,30)$


Rage: $(0,480)$
or $0<x<450$.


Ex 1: What "should" $f(0)$ be?
Ans: $\infty$ (so limit doesurt exist)
we say $\lim _{L \rightarrow 0} \not L+\frac{48}{L}=\infty$ (or "doesn't ens")
what "should" $f(1)$ be?
of course, $f(1)=7+48=55$
Ex 2: What "should" $g(0) b_{e}$ ?

$$
\begin{aligned}
& g(.1)=5.999 \ldots \\
& g(.01)=.5999 \ldots \\
& g(.001)=.0599 \ldots
\end{aligned}
$$

$g(0)$ "should be" zero. Write $\lim _{x \rightarrow 0} g(0)=0$.
Similaty, $g(30)$ "should be" zero.
Other cases of limits:

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$



We can also define the left-hand limit and right-hant limit.


Caution! Sometimes, the lefthanl limit and right-hand limits are equal (ie, the limit exists), but...
(1) They are differed from $f\left(x_{0}\right)$
(2) $f\left(x_{0}\right)$ may not even exist.


Ex (2):


Limits gereally behave like your expect:

$$
\begin{aligned}
& \lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x) \quad \text { Cporitel these exist] } \\
& \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}
\end{aligned}
$$

Ex (1): $\lim _{x \rightarrow 0} \frac{x^{2}+x}{x}=\lim _{x \rightarrow 0}\left(\frac{x^{2}}{x}\right)+\lim _{x \rightarrow 0}\left(\frac{x}{x}\right)=\lim _{x \rightarrow 0} x+\lim _{x \rightarrow 0} 1=0+1=1$

More on limits Thurs $8 / 30$
Goal: Determine the lowest/highest point of a curve.
How: At each point $P$ on a cure, we shall seek the line through $P$ that mist closely apoospinites the curve near P. "tangent line"

Key observation: The minimum is where this tangent line is horizontal.
Recall: The slope of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { if } x_{1} \neq x_{2} \text {. "rise over run" }\left(x_{2}, y_{2}\right) \\
& \Rightarrow y_{2}-y_{1}=m\left(x_{2}-x_{1}\right) \quad\left(x_{1}, y_{1}\right)
\end{aligned}
$$



A line is: rising if its slope is positive

- falling if its slope is relative
- horizontal if its slope is zero.

Think of slope as a stretching freer



A linear function has the form $f(x)=b x \in c$
A quadratic function has the form $f(x)=a x^{2}+b x+c \quad$ a $=0$.

Next goal: What is the tangent lire?
Sherlock Holmes' principle "When you have eliminated the impossible, whatever remains, however improbable, mast be the truth."

Simple example: Consider $f(x)=x^{2}$. Find the slope of the tangent line.

wrong answer

right answer

Secant line: Fri. $8 / 31$

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{(1+h)^{2}-(1+h)}{(1+h)-1}=\frac{1+2 h+h^{2}-1}{h}=\frac{2 h+h^{2}}{h}=2+h \text { if } h \neq 0 .
$$

For each $h \neq 0$, this is the wrong answer.
By the "Sherlock Holmes principle", the right answer is when $h=0$ : slope $=2$
let's ty again with $y=x^{2}$ at $P=(-2,4)$.
secant line has slope equal to $-4+h$.


* How to find a formula for all $x$ ?

We reed a clear definition of a tangent line at a point
Def: The slope of a secant line to $f$ at $(c, f(c))$ is

$$
\frac{\text { rise }}{\text { rm }}=\frac{f(c+h)-f(c)}{(c+h)-c}=\frac{f(c+h)-f(c)}{h}
$$



The slope of the tangent line to $f$ at $(c, f(c))$ is:

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

This determines a rex function called the derivative of $f$. $f^{\prime}(x)=$ "slope of the tangent live to $f$ at $(x, f(x))$ "

Example:

$$
\begin{array}{lll}
f(x)=x^{2} & \text { at }(1,1) & \text { slop }=2 \\
f(x)=x^{2} & \text { at }(-2,4) & \text { slope }=-4 \\
f(x)=x^{2} & \text { at }\left(x, x^{2}\right) & \text { slope }=\text { ??? }
\end{array}
$$

use formal: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$

$$
=\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 h x+h^{2}\right)-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h}
$$

$$
=\lim _{h \rightarrow 0}(2 x+h)=2 x
$$

So the denvative of $f(x)=x^{2}$ is $f^{\prime}(x)=2 x$

Question: How do we do this for a general function?
Mon. $9 / 3$
The interplay between a function and its derivation.
compare $f(x)=x^{2}$ vs. $f^{\prime}(x)=2 x$


Def: If the tangent line at $(c, f(c)$ ) is horizontal, then $c$ is a critical point.


Application: Let's maximize $g(x)=x(60-2 x)=60 x-2 x^{2}$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[60(x+h)-2(x+h)^{2}\right]-\left[60 x-2 x^{2}\right]}{h} \\
= & \lim _{h \rightarrow 0} \frac{\left[60 x+60 h-2\left(x^{2}+2 x h+h^{2}\right)\right]-\left[60 x-2 x^{2}\right]}{h} \\
= & \lim _{h \rightarrow 0} \frac{60 h-4 x h-2 h^{2}}{h}=\lim _{h \rightarrow 0} 60-4 x-2 h=60-4 x
\end{aligned}
$$

So $g^{\prime}(x)=60-4 x$
set equal to zero:

$$
g^{\prime}(x)=60-4 x=0 \Rightarrow x=15
$$



So $g$ has a horizontal tangent line at $x=15$.
This is where $g$ is maximized: $g(15)=15(60-30)=450$.
wed 9/5
Notation: Write $(f(x))^{\prime}$ for $f^{\prime}(x)$.
Last time, we saw that $\left(60 x-2 x^{2}\right)^{\prime}=60-4 x$
Goal: Find formulas for the derivative of functions, $e, g$,

$$
\begin{array}{ll}
\left(x^{n}\right)^{\prime}= & (f+g)^{\prime}= \\
(\sin x)^{\prime}= & (c f)^{\prime}= \\
\left(e^{x}\right)^{\prime}= & (f g)^{\prime}= \\
(\ln x)^{\prime}= & \left(\frac{f}{g}\right)^{\prime}=
\end{array}
$$

- Ex: Le $f(x)=x^{1}$, for some non-regative integer $n$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}=\lim _{h \rightarrow 0} \frac{\left[x^{n}+n x^{n-1} h+\ldots x^{n+2} h^{2}+\cdots+h^{n}\right]-\not x^{n}}{h} \\
& =\lim _{h \rightarrow 0} n x^{n-1}+h(\ldots)=n x^{n-1} .
\end{aligned}
$$

- Derivative of sums:

$$
\begin{aligned}
(f+g)^{\prime} & =\lim _{h \rightarrow 0} \frac{[f(x+h)+g(x+h)]-[f(x)+g(x)]}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

(1) Derivative r i scaler multiplation:

$$
\begin{aligned}
(c f)^{\prime} & =\lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x)}{h} \\
& =\lim _{h \rightarrow 0} c\left[\frac{f(x+h)-f(x)}{h}\right]=c \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=c f^{\prime}(x) .
\end{aligned}
$$

Application: derivatives of polynomials.

$$
\left(x^{5}+4 x^{3}-2\right)^{\prime}=5 x^{4}+12 x^{2}
$$

$$
F_{r i} 9 / 7
$$

- Reciprocal rule:

$$
\begin{aligned}
\left(\frac{1}{f}\right)^{\prime} & =\lim _{h \rightarrow 0}\left[\frac{1}{f(x+h)}-\frac{1}{f(x)}\right] h \\
& =\lim _{h \rightarrow 0}\left[\frac{f(x)}{f(x+h) f(x)}-\frac{f(x+h)}{f(x+h) f(x)}\right] \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x)-f(x+h)}{f(x+h) f(x)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-[f(x+h)-f(x)]}{h} \cdot \frac{1}{f(x+h) f(x)} \\
& =-f^{\prime}(x) \cdot \frac{1}{f(x) f(x)}=\frac{-f^{\prime}(x)}{(f(x))^{2}}
\end{aligned}
$$

Example: Compute $\left(x^{-3}\right)^{\prime}=\left(\frac{1}{x^{3}}\right)^{\prime}$.

$$
\text { let } f(x)=x^{3} \quad\left(\frac{1}{f}\right)^{\prime}=\frac{-f^{\prime}(x)}{(f(x))^{2}}=\frac{-3 x^{2}}{\left(x^{3}\right)^{2}}=\frac{-3 x^{2}}{x^{6}}=-3 x^{-4}=\frac{-3}{x^{4}}
$$

This generalizes further.
Example: Compute $\left(x^{-n}\right)^{\prime}=\left(\frac{1}{x^{n}}\right)^{\prime}$.
let $\begin{aligned} f(x) & =x^{n} \\ f^{\prime}(x) & =n x^{n-1}\end{aligned} \quad\left(\frac{1}{f}\right)^{\prime}=\frac{-f^{\prime}(x)}{(f(x))^{2}}=\frac{-n x^{n-1}}{\left(x^{n}\right)^{2}}=\frac{-n x^{n-1}}{x^{2 n}}=-n x^{-n-1}=\frac{-n}{x^{n-1}}$
Example: $\left(\frac{1}{x^{2}+1}\right)^{\prime}=\frac{-\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}}=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$
Remark: $\left(x^{n}\right)^{\prime}=n x^{n-1}$ holds for all integers n. (positive: inactive)

- Product rule.

$$
\begin{aligned}
(f g)^{\prime} & =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\lim _{h \rightarrow 0} \frac{f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \cdot g(x+h)+f(x) \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
\end{aligned}
$$

- Quotient rule. Compute $\left(\frac{f}{g}\right)^{\prime}$. [ [Its not $f^{\prime} / g^{\prime}!$ ]

Key point: $\frac{f}{g}=f \cdot \frac{1}{g}$. Well use the product and reciprocal rules.

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime}=\left(f \cdot \frac{1}{g}\right)^{\prime} & =f^{\prime} \cdot \frac{1}{g}+f \cdot\left(\frac{1}{g}\right)^{\prime} \\
& =\frac{f^{\prime}}{g}+f \cdot \frac{-g^{\prime}}{g^{2}} \\
& =\frac{f^{\prime} g}{g^{2}}-\frac{f g^{\prime}}{g^{2}}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
\end{aligned}
$$

Example: $\left(\frac{x^{2}+1}{x^{3}-2 x^{2}+3}\right)^{\prime}=\frac{2 x\left(x^{3}-2 x^{2}+3\right)-\left(x^{2}+1\right)\left(3 x^{2}-4 x\right)}{x^{3}-2 x^{2}+3}$

Mon 9/10
Retwn to old example: $\quad f(x)=7 x+\frac{48}{x}=7 x+48 x^{-1}$


Goal: Find min. $f f(x)$ (this is min cost).

$$
\left.\begin{array}{rl}
f^{\prime}(x)=7-48 x^{-2}=0 \\
& 7-\frac{48}{x^{2}}=0
\end{array}\right) \quad x^{2}=\frac{48}{7} .
$$



The min cost $f$ the fence is $f\left(\sqrt{\frac{28}{7}}\right)=7 \sqrt{\frac{48}{7}}+\frac{48}{4} / \sqrt{\frac{48}{7}} \approx 36,661$

Next goal: Compute derivatives of try functions $\left(\sin x, \cos x, e t_{c}\right)$
To do this, weill encounter $\lim _{h \rightarrow 0} \frac{\sin h}{h}$.
To evaluate these, well need the following:
Squeeze theorem: Suppose $f(x) \leq g(x) \leq h(x)$ rear a point a

$$
\text { If } \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then $\lim _{x \rightarrow 2} g(x)=L$.


Wed 9/12
Quick review of trig functions


$$
\frac{\text { hyp }}{\text { adj }}
$$

$$
\begin{aligned}
& \sin x=\frac{o p \rho}{h_{y \rho}} \\
& \cos x=\frac{\text { adj}}{h_{y \rho}} \\
& \tan x=\frac{\sin x}{\cos x}=\frac{\text { opp }}{\operatorname{adj}}
\end{aligned}
$$

$$
\frac{1}{\sin x}=\csc x, \quad \frac{1}{\cos x}=\sec x, \frac{1}{\tan x}=\cot x
$$




Application of squeeze theorem:


Note: $-x^{2} \leqslant x^{2} \sin \frac{1}{x} \leq x^{2}$

$$
\text { as } x \rightarrow 0 \int_{0} \int_{0} \begin{aligned}
& \text { as } x \rightarrow 0 \\
& \text { by square }
\end{aligned} \downarrow_{0} \text { as } x \rightarrow 0
$$

Next: Compute $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
what do yon think this should be? [I claim it's 1]

Evidence:




The squeeze theorem confirms if.

(malt, b, $\left.\frac{2}{\sin x}\right) \Rightarrow \cos x<\frac{x}{\sin x}<\frac{1}{\cos x}$
tale reciprocal $\Rightarrow \frac{1}{\cos x}>\frac{\sin x}{x}>\cos x$

Fri $9 / 14$
Exercise: Use the squeeze theorem to verify that

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

\& Let $f(x)=\sin x$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cosh +\sinh \cos x-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x(\cos h-1)}{h}+\lim _{h \rightarrow 0} \frac{\sinh \cos x}{h} \\
& =(\sin x) \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+(\cos x) \lim _{h \rightarrow 0} \frac{\sinh }{h} \\
& =\sin x \cdot 0+\cos x \cdot 1=\cos x
\end{aligned}
$$

A similar exercise can verify that $(\cos x)^{\prime}=-\sin x$.
We can use the quotient rule to compute the derivative of the other trig functions.
Ex: $(\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{(\cos x)^{2}}$

$$
\begin{aligned}
& =\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)^{\prime}}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

Summary

$$
\begin{array}{ll}
(\sin x)^{\prime}=\cos x & (\cos x)^{\prime}=-\sin x \\
(\tan x)^{\prime}=\sec ^{2} x & (\cot x)^{\prime}=-\csc ^{2} x \\
(\sec x)^{\prime}=\sec x \tan x & (\csc x)^{\prime}=-\csc x \cot x
\end{array}
$$

Note: The $2^{\text {nd }}$ column can be gotten from the $1^{\text {st }}$ column by afding/removing "CO" and a regative sign.

Next big idea: The derivative can be viewed as a way to measure the instaneous rate of change of a function.

Notations ( $\left(600^{\prime}\right)$ : Lagrange: $f^{\prime}(x)$
Euler: DI
Newton: y adopted in Brition

* Leibniz: $\frac{d y}{d x}$ adopted in Elope.

Advantages of Leibnre's notation resulted in Boeotian fulling 100-200 hundred years behind mainland Europe mathematically.

Man 9/17
Recall Leibniz's notation for the denvative: if $y=f(x)$, then $\frac{d y}{d x}=f^{\prime}(x)$.
Motivating example: let $y=x^{2}$


Slope of secant line is $\frac{\Delta y}{\Delta x}$.

$$
\Rightarrow \frac{\Delta y}{\Delta x}=2 x(\Delta x)+\Delta x, \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x)=2 x
$$

Leibniz defined $\left|\frac{d y}{d x}==\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}\right|$
Notation reasoning: Ancient Greek symbol $\Delta$ had evolved "in the limit" to the modern "d".

Practice this notation:
If $y=x^{2}$, then $\frac{d y}{d x}=\frac{d}{d y}\left(x^{2}\right)=2 x$
$A=s^{2}$, then $\frac{d A}{d s}=\frac{d}{d s}\left(s^{2}\right)=2 s$
$f(x)=x^{3}$, then $\frac{d f}{d x}=3 x^{2}$
Product rule: If $y=f \cdot g$, then $\frac{d y}{d x}=\frac{d f}{d x} \cdot g+f \cdot \frac{d g}{d x}$
Reciprocal rule: $\quad \frac{d}{d x}\left(\frac{1}{f}\right)=-\frac{1}{f^{2}} \cdot \frac{d f}{d x}$
Quotient rule: $\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{1}{g^{2}}\left(\frac{d f}{d x} \cdot g-f \cdot \frac{d g}{d x}\right)$.
Let $f(t)=$ position of an object at time $t$.
Examples:

- $f(t)=30 \mathrm{mi}$.


W velocity is ante of change of position

- $f(t)=60 t$.


High school math:


- velocity of a piecewise function is just the slope of that particular piece.

Calculus: Suppose the function $f(t)$ is no logger piecewise

© How fast are you traveling at this point in time?
"instantaneous velocity"
Things to ponder about infintesimals and calculus...

- Car yo ever go form notion to nom-motion instantareosily (ie, without "hitting a brick wall), or vice-versa.
- Actually, that has to haperes, any time year come to a complete step

Consider the height of an airplane:

is thar:

- a last point of time in the air?
- a first point of time on the gomel?

- a last pint of time on the grand?
- a first point of time in the ar?
wed 9/19
let $h(t)=-16 t^{2}+64$ be the height of a ball thrown in the air.
Questions:
(a) What is the averse speed during the $1^{\text {st }}$ second of flight ?
(b) what is the average speed during the $2^{n}$ second of flight?
(c) Whit is the instantaneous speed at $t=1$ ?
(d) When $t=3$, is the ball going up or down?
(e) When does the ball reach its max height?
(f) what is the rock's initial velocity?
(9) What is the code's acceleration.

(a) $\frac{h(1)-h(0)}{1-0}=\frac{48-0}{1-0}=48 \mathrm{ft}$
(b) $\frac{h(2)-h(1)}{2-1}=\frac{69-48}{2-1}=16 \mathrm{ft}$
(c) $\lim _{\Delta x \rightarrow 0} \frac{\Delta h}{\Delta t}=\left.\frac{d h}{d t}\right|_{t=1}=h^{\prime}(1)=32 \frac{\mathrm{ft}}{\mathrm{sec}}$.
(d) Down, because $h^{\prime}(3)<0$.
(e) $\frac{d h}{d t}=-32 t+64=0 \Rightarrow t=2 \mathrm{sec}$.
(f) $h^{\prime}(0)=64 \frac{\mathrm{ft}}{\mathrm{sec}}$
(g) Acceleation is ate of charge of velocity
position: velocity acceleation
$h(t) \quad v(t)=\frac{d h}{d t}=h^{\prime}(t) \quad a(t)=v^{\prime}(t)=\frac{d v}{d t}=h^{\prime \prime}(t)$
Note that $h^{\prime \prime}(t)=-16 \frac{\mathrm{ft}}{\mathrm{sec}} / \mathrm{sec}=-16 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}$.
lIst derivative: $h^{\prime}(t)>0 \Rightarrow$ ball traveling up
$h^{\prime}(t)<0 \Rightarrow$ ball traveling dom
2 nd derivative: $h^{\prime \prime}(t)>0 \Rightarrow$ ball speeding up (vol. is increasing)
$h^{\prime \prime}(t)<0 \quad \Rightarrow$ ball slowing darn (vel is decreasing).
What doer the second derivative tell us:
$f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)^{\prime}=$ rate of change of the slope of the tangent line



Fri $9 / 21$
Chain rule

Old example:

$\cos t \quad C=7 L+\frac{48}{L}$
"C is a function of $L$ "
" $L$ is a function of $W^{\prime}$

$$
=\frac{84}{w}+4 w
$$

"C is a function of W"

Question: How are the derivatives $\frac{d C}{d L}, \frac{d L}{d W}, \frac{d C}{d W}$ related?

Andogy: Suppose Clemson scores $3 x$ as much as GT
Suppose GT scores $2 x$ as mach as USC.
Question: How much more does Clemson score as USC?
Answer: $6 x$.

$$
\begin{aligned}
\frac{d \text { Clemson }}{d G T} \cdot \frac{d G T}{d U S C} & =\frac{d \text { Clemson }}{d \text { US }} \\
3 \cdot 2 & =6
\end{aligned}
$$

Chain rule: Given $f(g(x))$,

$$
\frac{d f}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x} \quad[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

new notation
ald notation

Practice:
Ex 1: lit $y=\left(3 x^{2}+7 x\right)^{5}$
Then $y=u^{5}$, where $u=3 x^{2}+7 x$

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=5 u^{4} \cdot(6 x+7)=5\left(3 x^{2}+7 x\right)^{4}(6 x+7) .
$$

OR: $f(x)=\left(3 x^{2}+7 x\right)^{5}$

$$
\begin{aligned}
f^{\prime}(x) & =5(\square)^{4} \cdot \frac{d}{d x}(\square \\
& =5\left(3 x^{2}+7 x\right)^{4} \cdot(6 x+7)
\end{aligned}
$$

Ex 2: $y=\operatorname{Sin}\left(3 x^{2}+5 x-7\right)$

$$
\begin{aligned}
\frac{d y}{d x} & =\cos \left(3 x^{2}+5 x-7\right) \cdot \frac{d}{d x}\left(3 x^{2}+5 x-7\right) \\
& =\cos \left(3 x^{2}+5 x-7\right) \cdot(6 x+5)
\end{aligned}
$$

Ex 3: $y=\sin (2 x)$

$$
\frac{d y}{d x}=\cos (2 x)-\frac{d}{d x}(2 x)=2 \cos (2 x)
$$

More greatly:

$$
\begin{aligned}
& \frac{d}{d x}(\sin k x)=k \cos k x \\
& \frac{d}{d x}(\cos k x)=-k \sin k x .
\end{aligned}
$$

Mon 9/24
Implicit differentiation
Sometimes, a function $y=y(x)$ is defined implicitly, rather than explicitly. Even in these cases, we can still find the derivative, $y^{\prime}=\frac{d y}{d x}$

Ex:- Consider a function $y$ defined by $x y+x \sin y=3 x$
Method: Differentiate both sides.

$$
\begin{aligned}
& x y+x \sin y=3 x \\
& (x y)^{\prime}+(x \sin y)^{\prime}=3 x \\
& 1 \cdot y+x y^{\prime}+1 \cdot \sin y+x(\cos y) \cdot y^{\prime}=3 \\
& y^{\prime}(x+x \cos y)+y+\sin y=3 \\
& y^{\prime}=\frac{3-y-\sin y}{x+x \cos y}
\end{aligned}
$$

Recall: $y^{\prime}=\frac{d y}{d x}$
Collect $y^{\prime}$

Ex:- Find the equation of the line tangent to $x^{2}+x y-y^{3}=7$ at the point $\left(x_{0}, y_{0}\right)=(3,2)$.

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}+x y-y^{3}\right)=\frac{d}{d x} 7 \\
& 2 x+1 \cdot y+x \cdot \frac{d y}{d x}-3 y^{2} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}\left(x-3 y^{2}\right)=-2 x-y \quad \Rightarrow \frac{d y}{d x}=\frac{-2 x-y}{x-3 y^{2}}
\end{aligned}
$$

$\left.\frac{d y}{d x}\right|_{(x, y)=(3,2)}=\frac{-2(3)-2}{3-3 \cdot 2^{2}}=\frac{-8}{-9}=\frac{8}{9}$. Tangent line: $y-2=\frac{8}{9}(x-3)$
wed. 9/26
Application of implicit differentiation: derivative of $x^{p / 8}$.

* How to compute $\frac{d}{d x}\left(x^{p / q}\right)$ ?
write $y=x^{p / q}$

$$
\begin{aligned}
& \Rightarrow y^{q}=x^{p} \\
& \frac{d}{d x}\left(y^{q}\right)=\frac{d}{d x}\left(x^{p}\right) \\
& q y^{q-1} \frac{d y}{d x}=p x^{p-1} \\
& \Rightarrow \frac{d y}{d x}=\frac{p}{q} \frac{x^{p-1}}{y^{q-1}}=\frac{x^{q}}{x^{p / q}}=x^{p-p / q} \\
& \Rightarrow \frac{x^{p-1}}{x^{p-p / q}}=\frac{p}{q} x^{(p-1)-\left(p-\frac{p}{q}\right)} \\
&=\frac{p}{q} x^{\frac{p}{q}-1}
\end{aligned}
$$

Thus, the power rule $\frac{d}{d x} x^{n}=n x^{n-1}$ also works for $1 n y$
rational number $n$.
Example: $\quad \frac{d}{d x} \sqrt{x}=\frac{d}{d x} x^{1 / 2}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$

- $\frac{d}{d x} \sqrt[3]{x^{2}+3 x-1}=\frac{d}{d x}\left(x^{2}+3 x-1\right)^{1 / 3}=\frac{1}{3}\left(x^{2}+3 x-1\right)^{-2 / 3} \cdot(2 x+3)$

Related rates
Example. A rock is dropped in a pond, and the ripple expands at a rate of $3 \mathrm{in} / \mathrm{sec}$. How fast is the area increasing when the radius is 7 in?

Give info: $\frac{d r}{d t}=3 \frac{\mathrm{in}}{\mathrm{sec}}$

$$
A=\pi r^{2}
$$

Want: $\left.\quad \frac{d A}{d t}\right|_{r=7}$
Note: We have functions $A(r)$ and $r(t)$.


Easy to mess up: $\frac{d}{d t} A\left(r(t)=A^{\prime}(r) \cdot r(t)=2 \pi r \cdot 3=6 \pi r\right.$.
Better: $\frac{d A}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d t}=2 \pi r \cdot 3=6 \pi r$
So $\left.\frac{d A}{d t}\right|_{r=6}=6 \pi r$.
Note: This is different from the optimization problems we saw earlier, since weir not trying to minimize or maximize anything.

Example: A lo-ft ladder rests against a wall. If the base is pulled away at a rite of $2 \mathrm{ft} / \mathrm{sec}$, how fast is the top of the ladder falling when the ladder is 6 ft from the wall? Given info: $\frac{d x}{d t}=2 \frac{\mathrm{ft}}{\mathrm{sec}}, \quad x^{2}+y^{2}=100$

Find: $\frac{d y}{d t}$
$x(t)$ and $y(t)$.


$$
\begin{array}{ll}
\frac{d}{d t}\left(x^{2}+y^{2}\right)=\frac{d}{d t}(100) & y=8 \begin{cases}10 & x^{2}+y^{2}=100 \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 & 6^{2}+y^{2}=100 \\
y^{2}=64 \Rightarrow y=8 \\
2 \cdot 6 \cdot 2+2 \cdot 8 \cdot \frac{d y}{d t}=0 & \Rightarrow 16 \frac{d y}{d t}=24 \Rightarrow \frac{d y}{d t}=1.5 \mathrm{ft} / \mathrm{sec}\end{cases}
\end{array}
$$

Fri 9/28
Another related rates problem.
Sandpile: Sand falls from an overhead bin. It forms a sandpile with a radius that is 3 times its height. If it fills at a rate of $120 \mathrm{ft}^{3} / \mathrm{min}$, how fast is the height changing when the pile is to ft high?

Given info: $r=3 \mathrm{~h}$

$$
\begin{aligned}
& \frac{d V}{d t}=120 \mathrm{ft}^{3} / \mathrm{min} \\
& V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(3 h)^{2} \cdot h=3 \pi h^{3}
\end{aligned}
$$

Find: $\left.\frac{d h}{d t}\right|_{h=10}$.
Chain rule: $\frac{d h}{d t}=\frac{d h}{d V} \cdot \frac{d V}{d t}$

$$
\begin{aligned}
V=3 \pi h^{3} & \Rightarrow \frac{d}{d V}(V)=\frac{d}{d V}\left(3 \pi h^{3}\right) \\
& \Rightarrow 1=27 \pi h^{2} \cdot \frac{d h}{d V} \Rightarrow \frac{d h}{d V}=\frac{1}{27 \pi h^{2}}=\frac{1}{2700 \pi} \text { when } h=10
\end{aligned}
$$

So $\left.\frac{d h}{d t}\right|_{h=10}=\left.\left.\frac{d h}{d V}\right|_{h=10} \cdot \frac{d V}{d t}\right|_{h=10}=\frac{1}{2700 \pi} \cdot 120=12 \frac{12}{270 \pi} \frac{\mathrm{ft}}{\mathrm{min}}$
Mon $10 / 3$
Exponential functions
we hear a lot "e is a number that comes up a lot in nature." But what does that mean?

Motivating examen:
Consider an investment that grows at a $100 \%$ rate. For simplicity, suppose the interest rate is $100 \%$.

rate $=100 \%$
After 1 year: $P(1)=P_{0}(1+1)=2 P_{0}$ $\hat{c}_{\text {original }} \hat{\text { gained }}$


$$
\begin{aligned}
P(1) & =P_{0}\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2}\right) \\
& =P_{0}\left(1+\frac{1}{2}\right)^{2}=2.25 P_{0}
\end{aligned}
$$



$$
\begin{aligned}
P(1) & =P_{0}\left(1+\frac{1}{4}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{4}\right) \\
& =P_{0}\left(1+\frac{1}{4}\right)^{4} \approx 2.441 P_{0}
\end{aligned}
$$



After 1 year:

$$
\begin{aligned}
P(1) & =P_{0}\left(1+\frac{1}{355}\right)^{365} \\
& \approx 2.7146 P_{0}
\end{aligned}
$$

In the limit, we say the interest is compander cantruously.


After I year

$$
P(1)=P_{0} \underbrace{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}}_{\text {call this "e" } e^{\prime \prime}, \approx 2.718281828 \ldots}
$$

e was first discrered in the early (600' by Napier. It arose several other times in the 1600 s in different contexts.

In 1683, Jacob Bernoulli showed that $e<3$.
[Note that by our above argument, $e>2, e>2.25, \ldots$ ]
Becroulli: Define $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
wed 1013
Note that $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-1)}{3!} x^{3}+\cdots+x^{n}$
Plug in $x=\frac{1}{n}:\left(1+\frac{1}{n}\right)^{n} \approx 1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots$

$$
\begin{aligned}
& \leq 1+1+\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots \\
& =1+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots=3 .
\end{aligned}
$$

Similarly, we can define $e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$
Derivative of $e^{x}$ : Given $f(x)=e^{x}$,

$$
\begin{aligned}
F^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{e^{x+\Delta x}-e^{x}}{\Delta x}=e^{x} \lim _{\Delta x \rightarrow 0} \frac{e^{\Delta x}-1}{\Delta x} & \text { let } n=e^{\Delta x}-1 \\
=e^{x} \lim _{n \rightarrow 0} \frac{n}{\ln (n+1)} \cdot \frac{1 / n}{1 / n} & \Leftrightarrow n+1=e^{\Delta x} \\
& \Leftrightarrow \ln (n+1)=\Delta x
\end{aligned}
$$

$$
\begin{aligned}
& =e^{x} \lim _{n \rightarrow 0} \frac{1}{\frac{1}{n} \ln (1+n)}=e^{x} \lim _{n \rightarrow 0} \frac{1}{\ln (1+n)^{1 / n}} \\
& =e^{x} \lim _{n \rightarrow \infty} \frac{1}{\ln \left(1+y_{n}\right)^{n}}=e^{x} \cdot 1=e^{x}
\end{aligned}
$$

$A$ Thus, $\quad \frac{d}{d x} e^{x}=e^{x}$
By the chain rule, $\frac{d}{d x}\left(e^{k_{x}}\right)=k e^{k_{x}}$
Frills $\quad \frac{d}{d x} e^{\left(x^{2}\right)}=e^{\left(x^{2}\right)} \cdot \frac{d}{d x} 2 x=2 x e^{x^{2}}$.



Natural logarithm:
Recall that $e^{x}$ and $\operatorname{In} x$ are inverse functions, ie,


Derivatives of other expmantal functions
Let $f(x)=2^{x}=\left(e^{\ln 2}\right)^{x}=e^{(\ln 2) x}$

$$
f^{\prime}(x)=(\ln 2) e^{(\ln 2) x}=(\ln 2) 2^{x}
$$

Similarly, $\frac{d}{d x} b^{x}=(\ln b) b^{x}$.
Denvative of natural log:
Suppose $y=\ln x$. Then $e^{y}=x$.

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{y}\right)=\frac{d}{d x}(x) \\
& e^{y} \cdot \frac{d y}{d x}=1 \quad \Rightarrow \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x}
\end{aligned}
$$

Thus, $\frac{d}{d x}(\ln x)=\frac{1}{x}$.

